diff options
Diffstat (limited to 'gl/sha1.c')
| -rw-r--r-- | gl/sha1.c | 360 |
1 files changed, 0 insertions, 360 deletions
diff --git a/gl/sha1.c b/gl/sha1.c deleted file mode 100644 index 80f0b7a3..00000000 --- a/gl/sha1.c +++ /dev/null | |||
| @@ -1,360 +0,0 @@ | |||
| 1 | /* sha1.c - Functions to compute SHA1 message digest of files or | ||
| 2 | memory blocks according to the NIST specification FIPS-180-1. | ||
| 3 | |||
| 4 | Copyright (C) 2000-2001, 2003-2006, 2008-2023 Free Software Foundation, Inc. | ||
| 5 | |||
| 6 | This file is free software: you can redistribute it and/or modify | ||
| 7 | it under the terms of the GNU Lesser General Public License as | ||
| 8 | published by the Free Software Foundation; either version 2.1 of the | ||
| 9 | License, or (at your option) any later version. | ||
| 10 | |||
| 11 | This file is distributed in the hope that it will be useful, | ||
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 14 | GNU Lesser General Public License for more details. | ||
| 15 | |||
| 16 | You should have received a copy of the GNU Lesser General Public License | ||
| 17 | along with this program. If not, see <https://www.gnu.org/licenses/>. */ | ||
| 18 | |||
| 19 | /* Written by Scott G. Miller | ||
| 20 | Credits: | ||
| 21 | Robert Klep <robert@ilse.nl> -- Expansion function fix | ||
| 22 | */ | ||
| 23 | |||
| 24 | #include <config.h> | ||
| 25 | |||
| 26 | /* Specification. */ | ||
| 27 | #if HAVE_OPENSSL_SHA1 | ||
| 28 | # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE | ||
| 29 | #endif | ||
| 30 | #include "sha1.h" | ||
| 31 | |||
| 32 | #include <stdint.h> | ||
| 33 | #include <string.h> | ||
| 34 | |||
| 35 | #include <byteswap.h> | ||
| 36 | #ifdef WORDS_BIGENDIAN | ||
| 37 | # define SWAP(n) (n) | ||
| 38 | #else | ||
| 39 | # define SWAP(n) bswap_32 (n) | ||
| 40 | #endif | ||
| 41 | |||
| 42 | #if ! HAVE_OPENSSL_SHA1 | ||
| 43 | |||
| 44 | /* This array contains the bytes used to pad the buffer to the next | ||
| 45 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | ||
| 46 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | ||
| 47 | |||
| 48 | |||
| 49 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and | ||
| 50 | initialize it to the start constants of the SHA1 algorithm. This | ||
| 51 | must be called before using hash in the call to sha1_hash. */ | ||
| 52 | void | ||
| 53 | sha1_init_ctx (struct sha1_ctx *ctx) | ||
| 54 | { | ||
| 55 | ctx->A = 0x67452301; | ||
| 56 | ctx->B = 0xefcdab89; | ||
| 57 | ctx->C = 0x98badcfe; | ||
| 58 | ctx->D = 0x10325476; | ||
| 59 | ctx->E = 0xc3d2e1f0; | ||
| 60 | |||
| 61 | ctx->total[0] = ctx->total[1] = 0; | ||
| 62 | ctx->buflen = 0; | ||
| 63 | } | ||
| 64 | |||
| 65 | /* Copy the 4 byte value from v into the memory location pointed to by *cp, | ||
| 66 | If your architecture allows unaligned access this is equivalent to | ||
| 67 | * (uint32_t *) cp = v */ | ||
| 68 | static void | ||
| 69 | set_uint32 (char *cp, uint32_t v) | ||
| 70 | { | ||
| 71 | memcpy (cp, &v, sizeof v); | ||
| 72 | } | ||
| 73 | |||
| 74 | /* Put result from CTX in first 20 bytes following RESBUF. The result | ||
| 75 | must be in little endian byte order. */ | ||
| 76 | void * | ||
| 77 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) | ||
| 78 | { | ||
| 79 | char *r = resbuf; | ||
| 80 | set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A)); | ||
| 81 | set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B)); | ||
| 82 | set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C)); | ||
| 83 | set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D)); | ||
| 84 | set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E)); | ||
| 85 | |||
| 86 | return resbuf; | ||
| 87 | } | ||
| 88 | |||
| 89 | /* Process the remaining bytes in the internal buffer and the usual | ||
| 90 | prolog according to the standard and write the result to RESBUF. */ | ||
| 91 | void * | ||
| 92 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) | ||
| 93 | { | ||
| 94 | /* Take yet unprocessed bytes into account. */ | ||
| 95 | uint32_t bytes = ctx->buflen; | ||
| 96 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | ||
| 97 | |||
| 98 | /* Now count remaining bytes. */ | ||
| 99 | ctx->total[0] += bytes; | ||
| 100 | if (ctx->total[0] < bytes) | ||
| 101 | ++ctx->total[1]; | ||
| 102 | |||
| 103 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | ||
| 104 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); | ||
| 105 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); | ||
| 106 | |||
| 107 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | ||
| 108 | |||
| 109 | /* Process last bytes. */ | ||
| 110 | sha1_process_block (ctx->buffer, size * 4, ctx); | ||
| 111 | |||
| 112 | return sha1_read_ctx (ctx, resbuf); | ||
| 113 | } | ||
| 114 | |||
| 115 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The | ||
| 116 | result is always in little endian byte order, so that a byte-wise | ||
| 117 | output yields to the wanted ASCII representation of the message | ||
| 118 | digest. */ | ||
| 119 | void * | ||
| 120 | sha1_buffer (const char *buffer, size_t len, void *resblock) | ||
| 121 | { | ||
| 122 | struct sha1_ctx ctx; | ||
| 123 | |||
| 124 | /* Initialize the computation context. */ | ||
| 125 | sha1_init_ctx (&ctx); | ||
| 126 | |||
| 127 | /* Process whole buffer but last len % 64 bytes. */ | ||
| 128 | sha1_process_bytes (buffer, len, &ctx); | ||
| 129 | |||
| 130 | /* Put result in desired memory area. */ | ||
| 131 | return sha1_finish_ctx (&ctx, resblock); | ||
| 132 | } | ||
| 133 | |||
| 134 | void | ||
| 135 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
| 136 | { | ||
| 137 | /* When we already have some bits in our internal buffer concatenate | ||
| 138 | both inputs first. */ | ||
| 139 | if (ctx->buflen != 0) | ||
| 140 | { | ||
| 141 | size_t left_over = ctx->buflen; | ||
| 142 | size_t add = 128 - left_over > len ? len : 128 - left_over; | ||
| 143 | |||
| 144 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | ||
| 145 | ctx->buflen += add; | ||
| 146 | |||
| 147 | if (ctx->buflen > 64) | ||
| 148 | { | ||
| 149 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | ||
| 150 | |||
| 151 | ctx->buflen &= 63; | ||
| 152 | /* The regions in the following copy operation cannot overlap, | ||
| 153 | because ctx->buflen < 64 ≤ (left_over + add) & ~63. */ | ||
| 154 | memcpy (ctx->buffer, | ||
| 155 | &((char *) ctx->buffer)[(left_over + add) & ~63], | ||
| 156 | ctx->buflen); | ||
| 157 | } | ||
| 158 | |||
| 159 | buffer = (const char *) buffer + add; | ||
| 160 | len -= add; | ||
| 161 | } | ||
| 162 | |||
| 163 | /* Process available complete blocks. */ | ||
| 164 | if (len >= 64) | ||
| 165 | { | ||
| 166 | #if !(_STRING_ARCH_unaligned || _STRING_INLINE_unaligned) | ||
| 167 | # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0) | ||
| 168 | if (UNALIGNED_P (buffer)) | ||
| 169 | while (len > 64) | ||
| 170 | { | ||
| 171 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | ||
| 172 | buffer = (const char *) buffer + 64; | ||
| 173 | len -= 64; | ||
| 174 | } | ||
| 175 | else | ||
| 176 | #endif | ||
| 177 | { | ||
| 178 | sha1_process_block (buffer, len & ~63, ctx); | ||
| 179 | buffer = (const char *) buffer + (len & ~63); | ||
| 180 | len &= 63; | ||
| 181 | } | ||
| 182 | } | ||
| 183 | |||
| 184 | /* Move remaining bytes in internal buffer. */ | ||
| 185 | if (len > 0) | ||
| 186 | { | ||
| 187 | size_t left_over = ctx->buflen; | ||
| 188 | |||
| 189 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | ||
| 190 | left_over += len; | ||
| 191 | if (left_over >= 64) | ||
| 192 | { | ||
| 193 | sha1_process_block (ctx->buffer, 64, ctx); | ||
| 194 | left_over -= 64; | ||
| 195 | /* The regions in the following copy operation cannot overlap, | ||
| 196 | because left_over ≤ 64. */ | ||
| 197 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | ||
| 198 | } | ||
| 199 | ctx->buflen = left_over; | ||
| 200 | } | ||
| 201 | } | ||
| 202 | |||
| 203 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ | ||
| 204 | |||
| 205 | /* SHA1 round constants */ | ||
| 206 | #define K1 0x5a827999 | ||
| 207 | #define K2 0x6ed9eba1 | ||
| 208 | #define K3 0x8f1bbcdc | ||
| 209 | #define K4 0xca62c1d6 | ||
| 210 | |||
| 211 | /* Round functions. Note that F2 is the same as F4. */ | ||
| 212 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) | ||
| 213 | #define F2(B,C,D) (B ^ C ^ D) | ||
| 214 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) | ||
| 215 | #define F4(B,C,D) (B ^ C ^ D) | ||
| 216 | |||
| 217 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | ||
| 218 | It is assumed that LEN % 64 == 0. | ||
| 219 | Most of this code comes from GnuPG's cipher/sha1.c. */ | ||
| 220 | |||
| 221 | void | ||
| 222 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
| 223 | { | ||
| 224 | const uint32_t *words = buffer; | ||
| 225 | size_t nwords = len / sizeof (uint32_t); | ||
| 226 | const uint32_t *endp = words + nwords; | ||
| 227 | uint32_t x[16]; | ||
| 228 | uint32_t a = ctx->A; | ||
| 229 | uint32_t b = ctx->B; | ||
| 230 | uint32_t c = ctx->C; | ||
| 231 | uint32_t d = ctx->D; | ||
| 232 | uint32_t e = ctx->E; | ||
| 233 | uint32_t lolen = len; | ||
| 234 | |||
| 235 | /* First increment the byte count. RFC 1321 specifies the possible | ||
| 236 | length of the file up to 2^64 bits. Here we only compute the | ||
| 237 | number of bytes. Do a double word increment. */ | ||
| 238 | ctx->total[0] += lolen; | ||
| 239 | ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen); | ||
| 240 | |||
| 241 | #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) | ||
| 242 | |||
| 243 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ | ||
| 244 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ | ||
| 245 | , (x[I&0x0f] = rol(tm, 1)) ) | ||
| 246 | |||
| 247 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ | ||
| 248 | + F( B, C, D ) \ | ||
| 249 | + K \ | ||
| 250 | + M; \ | ||
| 251 | B = rol( B, 30 ); \ | ||
| 252 | } while(0) | ||
| 253 | |||
| 254 | while (words < endp) | ||
| 255 | { | ||
| 256 | uint32_t tm; | ||
| 257 | int t; | ||
| 258 | for (t = 0; t < 16; t++) | ||
| 259 | { | ||
| 260 | x[t] = SWAP (*words); | ||
| 261 | words++; | ||
| 262 | } | ||
| 263 | |||
| 264 | R( a, b, c, d, e, F1, K1, x[ 0] ); | ||
| 265 | R( e, a, b, c, d, F1, K1, x[ 1] ); | ||
| 266 | R( d, e, a, b, c, F1, K1, x[ 2] ); | ||
| 267 | R( c, d, e, a, b, F1, K1, x[ 3] ); | ||
| 268 | R( b, c, d, e, a, F1, K1, x[ 4] ); | ||
| 269 | R( a, b, c, d, e, F1, K1, x[ 5] ); | ||
| 270 | R( e, a, b, c, d, F1, K1, x[ 6] ); | ||
| 271 | R( d, e, a, b, c, F1, K1, x[ 7] ); | ||
| 272 | R( c, d, e, a, b, F1, K1, x[ 8] ); | ||
| 273 | R( b, c, d, e, a, F1, K1, x[ 9] ); | ||
| 274 | R( a, b, c, d, e, F1, K1, x[10] ); | ||
| 275 | R( e, a, b, c, d, F1, K1, x[11] ); | ||
| 276 | R( d, e, a, b, c, F1, K1, x[12] ); | ||
| 277 | R( c, d, e, a, b, F1, K1, x[13] ); | ||
| 278 | R( b, c, d, e, a, F1, K1, x[14] ); | ||
| 279 | R( a, b, c, d, e, F1, K1, x[15] ); | ||
| 280 | R( e, a, b, c, d, F1, K1, M(16) ); | ||
| 281 | R( d, e, a, b, c, F1, K1, M(17) ); | ||
| 282 | R( c, d, e, a, b, F1, K1, M(18) ); | ||
| 283 | R( b, c, d, e, a, F1, K1, M(19) ); | ||
| 284 | R( a, b, c, d, e, F2, K2, M(20) ); | ||
| 285 | R( e, a, b, c, d, F2, K2, M(21) ); | ||
| 286 | R( d, e, a, b, c, F2, K2, M(22) ); | ||
| 287 | R( c, d, e, a, b, F2, K2, M(23) ); | ||
| 288 | R( b, c, d, e, a, F2, K2, M(24) ); | ||
| 289 | R( a, b, c, d, e, F2, K2, M(25) ); | ||
| 290 | R( e, a, b, c, d, F2, K2, M(26) ); | ||
| 291 | R( d, e, a, b, c, F2, K2, M(27) ); | ||
| 292 | R( c, d, e, a, b, F2, K2, M(28) ); | ||
| 293 | R( b, c, d, e, a, F2, K2, M(29) ); | ||
| 294 | R( a, b, c, d, e, F2, K2, M(30) ); | ||
| 295 | R( e, a, b, c, d, F2, K2, M(31) ); | ||
| 296 | R( d, e, a, b, c, F2, K2, M(32) ); | ||
| 297 | R( c, d, e, a, b, F2, K2, M(33) ); | ||
| 298 | R( b, c, d, e, a, F2, K2, M(34) ); | ||
| 299 | R( a, b, c, d, e, F2, K2, M(35) ); | ||
| 300 | R( e, a, b, c, d, F2, K2, M(36) ); | ||
| 301 | R( d, e, a, b, c, F2, K2, M(37) ); | ||
| 302 | R( c, d, e, a, b, F2, K2, M(38) ); | ||
| 303 | R( b, c, d, e, a, F2, K2, M(39) ); | ||
| 304 | R( a, b, c, d, e, F3, K3, M(40) ); | ||
| 305 | R( e, a, b, c, d, F3, K3, M(41) ); | ||
| 306 | R( d, e, a, b, c, F3, K3, M(42) ); | ||
| 307 | R( c, d, e, a, b, F3, K3, M(43) ); | ||
| 308 | R( b, c, d, e, a, F3, K3, M(44) ); | ||
| 309 | R( a, b, c, d, e, F3, K3, M(45) ); | ||
| 310 | R( e, a, b, c, d, F3, K3, M(46) ); | ||
| 311 | R( d, e, a, b, c, F3, K3, M(47) ); | ||
| 312 | R( c, d, e, a, b, F3, K3, M(48) ); | ||
| 313 | R( b, c, d, e, a, F3, K3, M(49) ); | ||
| 314 | R( a, b, c, d, e, F3, K3, M(50) ); | ||
| 315 | R( e, a, b, c, d, F3, K3, M(51) ); | ||
| 316 | R( d, e, a, b, c, F3, K3, M(52) ); | ||
| 317 | R( c, d, e, a, b, F3, K3, M(53) ); | ||
| 318 | R( b, c, d, e, a, F3, K3, M(54) ); | ||
| 319 | R( a, b, c, d, e, F3, K3, M(55) ); | ||
| 320 | R( e, a, b, c, d, F3, K3, M(56) ); | ||
| 321 | R( d, e, a, b, c, F3, K3, M(57) ); | ||
| 322 | R( c, d, e, a, b, F3, K3, M(58) ); | ||
| 323 | R( b, c, d, e, a, F3, K3, M(59) ); | ||
| 324 | R( a, b, c, d, e, F4, K4, M(60) ); | ||
| 325 | R( e, a, b, c, d, F4, K4, M(61) ); | ||
| 326 | R( d, e, a, b, c, F4, K4, M(62) ); | ||
| 327 | R( c, d, e, a, b, F4, K4, M(63) ); | ||
| 328 | R( b, c, d, e, a, F4, K4, M(64) ); | ||
| 329 | R( a, b, c, d, e, F4, K4, M(65) ); | ||
| 330 | R( e, a, b, c, d, F4, K4, M(66) ); | ||
| 331 | R( d, e, a, b, c, F4, K4, M(67) ); | ||
| 332 | R( c, d, e, a, b, F4, K4, M(68) ); | ||
| 333 | R( b, c, d, e, a, F4, K4, M(69) ); | ||
| 334 | R( a, b, c, d, e, F4, K4, M(70) ); | ||
| 335 | R( e, a, b, c, d, F4, K4, M(71) ); | ||
| 336 | R( d, e, a, b, c, F4, K4, M(72) ); | ||
| 337 | R( c, d, e, a, b, F4, K4, M(73) ); | ||
| 338 | R( b, c, d, e, a, F4, K4, M(74) ); | ||
| 339 | R( a, b, c, d, e, F4, K4, M(75) ); | ||
| 340 | R( e, a, b, c, d, F4, K4, M(76) ); | ||
| 341 | R( d, e, a, b, c, F4, K4, M(77) ); | ||
| 342 | R( c, d, e, a, b, F4, K4, M(78) ); | ||
| 343 | R( b, c, d, e, a, F4, K4, M(79) ); | ||
| 344 | |||
| 345 | a = ctx->A += a; | ||
| 346 | b = ctx->B += b; | ||
| 347 | c = ctx->C += c; | ||
| 348 | d = ctx->D += d; | ||
| 349 | e = ctx->E += e; | ||
| 350 | } | ||
| 351 | } | ||
| 352 | |||
| 353 | #endif | ||
| 354 | |||
| 355 | /* | ||
| 356 | * Hey Emacs! | ||
| 357 | * Local Variables: | ||
| 358 | * coding: utf-8 | ||
| 359 | * End: | ||
| 360 | */ | ||
