diff options
Diffstat (limited to 'lib/regcomp.c')
| -rw-r--r-- | lib/regcomp.c | 3779 |
1 files changed, 0 insertions, 3779 deletions
diff --git a/lib/regcomp.c b/lib/regcomp.c deleted file mode 100644 index 279b20c4..00000000 --- a/lib/regcomp.c +++ /dev/null | |||
| @@ -1,3779 +0,0 @@ | |||
| 1 | /* Extended regular expression matching and search library. | ||
| 2 | Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. | ||
| 3 | This file is part of the GNU C Library. | ||
| 4 | Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify | ||
| 7 | it under the terms of the GNU General Public License as published by | ||
| 8 | the Free Software Foundation; either version 2, or (at your option) | ||
| 9 | any later version. | ||
| 10 | |||
| 11 | This program is distributed in the hope that it will be useful, | ||
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 14 | GNU General Public License for more details. | ||
| 15 | |||
| 16 | You should have received a copy of the GNU General Public License along | ||
| 17 | with this program; if not, write to the Free Software Foundation, | ||
| 18 | Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ | ||
| 19 | |||
| 20 | static reg_errcode_t re_compile_internal (regex_t *preg, const char * pattern, | ||
| 21 | Idx length, reg_syntax_t syntax); | ||
| 22 | static void re_compile_fastmap_iter (regex_t *bufp, | ||
| 23 | const re_dfastate_t *init_state, | ||
| 24 | char *fastmap); | ||
| 25 | static reg_errcode_t init_dfa (re_dfa_t *dfa, Idx pat_len); | ||
| 26 | #ifdef RE_ENABLE_I18N | ||
| 27 | static void free_charset (re_charset_t *cset); | ||
| 28 | #endif /* RE_ENABLE_I18N */ | ||
| 29 | static void free_workarea_compile (regex_t *preg); | ||
| 30 | static reg_errcode_t create_initial_state (re_dfa_t *dfa); | ||
| 31 | #ifdef RE_ENABLE_I18N | ||
| 32 | static void optimize_utf8 (re_dfa_t *dfa); | ||
| 33 | #endif | ||
| 34 | static reg_errcode_t analyze (regex_t *preg); | ||
| 35 | static reg_errcode_t preorder (bin_tree_t *root, | ||
| 36 | reg_errcode_t (fn (void *, bin_tree_t *)), | ||
| 37 | void *extra); | ||
| 38 | static reg_errcode_t postorder (bin_tree_t *root, | ||
| 39 | reg_errcode_t (fn (void *, bin_tree_t *)), | ||
| 40 | void *extra); | ||
| 41 | static reg_errcode_t optimize_subexps (void *extra, bin_tree_t *node); | ||
| 42 | static reg_errcode_t lower_subexps (void *extra, bin_tree_t *node); | ||
| 43 | static bin_tree_t *lower_subexp (reg_errcode_t *err, regex_t *preg, | ||
| 44 | bin_tree_t *node); | ||
| 45 | static reg_errcode_t calc_first (void *extra, bin_tree_t *node); | ||
| 46 | static reg_errcode_t calc_next (void *extra, bin_tree_t *node); | ||
| 47 | static reg_errcode_t link_nfa_nodes (void *extra, bin_tree_t *node); | ||
| 48 | static Idx duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint); | ||
| 49 | static Idx search_duplicated_node (const re_dfa_t *dfa, Idx org_node, | ||
| 50 | unsigned int constraint); | ||
| 51 | static reg_errcode_t calc_eclosure (re_dfa_t *dfa); | ||
| 52 | static reg_errcode_t calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, | ||
| 53 | Idx node, bool root); | ||
| 54 | static reg_errcode_t calc_inveclosure (re_dfa_t *dfa); | ||
| 55 | static Idx fetch_number (re_string_t *input, re_token_t *token, | ||
| 56 | reg_syntax_t syntax); | ||
| 57 | static int peek_token (re_token_t *token, re_string_t *input, | ||
| 58 | reg_syntax_t syntax); | ||
| 59 | static bin_tree_t *parse (re_string_t *regexp, regex_t *preg, | ||
| 60 | reg_syntax_t syntax, reg_errcode_t *err); | ||
| 61 | static bin_tree_t *parse_reg_exp (re_string_t *regexp, regex_t *preg, | ||
| 62 | re_token_t *token, reg_syntax_t syntax, | ||
| 63 | Idx nest, reg_errcode_t *err); | ||
| 64 | static bin_tree_t *parse_branch (re_string_t *regexp, regex_t *preg, | ||
| 65 | re_token_t *token, reg_syntax_t syntax, | ||
| 66 | Idx nest, reg_errcode_t *err); | ||
| 67 | static bin_tree_t *parse_expression (re_string_t *regexp, regex_t *preg, | ||
| 68 | re_token_t *token, reg_syntax_t syntax, | ||
| 69 | Idx nest, reg_errcode_t *err); | ||
| 70 | static bin_tree_t *parse_sub_exp (re_string_t *regexp, regex_t *preg, | ||
| 71 | re_token_t *token, reg_syntax_t syntax, | ||
| 72 | Idx nest, reg_errcode_t *err); | ||
| 73 | static bin_tree_t *parse_dup_op (bin_tree_t *dup_elem, re_string_t *regexp, | ||
| 74 | re_dfa_t *dfa, re_token_t *token, | ||
| 75 | reg_syntax_t syntax, reg_errcode_t *err); | ||
| 76 | static bin_tree_t *parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, | ||
| 77 | re_token_t *token, reg_syntax_t syntax, | ||
| 78 | reg_errcode_t *err); | ||
| 79 | static reg_errcode_t parse_bracket_element (bracket_elem_t *elem, | ||
| 80 | re_string_t *regexp, | ||
| 81 | re_token_t *token, int token_len, | ||
| 82 | re_dfa_t *dfa, | ||
| 83 | reg_syntax_t syntax, | ||
| 84 | bool accept_hyphen); | ||
| 85 | static reg_errcode_t parse_bracket_symbol (bracket_elem_t *elem, | ||
| 86 | re_string_t *regexp, | ||
| 87 | re_token_t *token); | ||
| 88 | #ifdef RE_ENABLE_I18N | ||
| 89 | static reg_errcode_t build_equiv_class (bitset sbcset, | ||
| 90 | re_charset_t *mbcset, | ||
| 91 | Idx *equiv_class_alloc, | ||
| 92 | const unsigned char *name); | ||
| 93 | static reg_errcode_t build_charclass (unsigned REG_TRANSLATE_TYPE trans, | ||
| 94 | bitset sbcset, | ||
| 95 | re_charset_t *mbcset, | ||
| 96 | Idx *char_class_alloc, | ||
| 97 | const unsigned char *class_name, | ||
| 98 | reg_syntax_t syntax); | ||
| 99 | #else /* not RE_ENABLE_I18N */ | ||
| 100 | static reg_errcode_t build_equiv_class (bitset sbcset, | ||
| 101 | const unsigned char *name); | ||
| 102 | static reg_errcode_t build_charclass (unsigned REG_TRANSLATE_TYPE trans, | ||
| 103 | bitset sbcset, | ||
| 104 | const unsigned char *class_name, | ||
| 105 | reg_syntax_t syntax); | ||
| 106 | #endif /* not RE_ENABLE_I18N */ | ||
| 107 | static bin_tree_t *build_charclass_op (re_dfa_t *dfa, | ||
| 108 | unsigned REG_TRANSLATE_TYPE trans, | ||
| 109 | const unsigned char *class_name, | ||
| 110 | const unsigned char *extra, | ||
| 111 | bool non_match, reg_errcode_t *err); | ||
| 112 | static bin_tree_t *create_tree (re_dfa_t *dfa, | ||
| 113 | bin_tree_t *left, bin_tree_t *right, | ||
| 114 | re_token_type_t type); | ||
| 115 | static bin_tree_t *create_token_tree (re_dfa_t *dfa, | ||
| 116 | bin_tree_t *left, bin_tree_t *right, | ||
| 117 | const re_token_t *token); | ||
| 118 | static bin_tree_t *duplicate_tree (const bin_tree_t *src, re_dfa_t *dfa); | ||
| 119 | static void free_token (re_token_t *node); | ||
| 120 | static reg_errcode_t free_tree (void *extra, bin_tree_t *node); | ||
| 121 | static reg_errcode_t mark_opt_subexp (void *extra, bin_tree_t *node); | ||
| 122 | |||
| 123 | /* This table gives an error message for each of the error codes listed | ||
| 124 | in regex.h. Obviously the order here has to be same as there. | ||
| 125 | POSIX doesn't require that we do anything for REG_NOERROR, | ||
| 126 | but why not be nice? */ | ||
| 127 | |||
| 128 | const char __re_error_msgid[] attribute_hidden = | ||
| 129 | { | ||
| 130 | #define REG_NOERROR_IDX 0 | ||
| 131 | gettext_noop ("Success") /* REG_NOERROR */ | ||
| 132 | "\0" | ||
| 133 | #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") | ||
| 134 | gettext_noop ("No match") /* REG_NOMATCH */ | ||
| 135 | "\0" | ||
| 136 | #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") | ||
| 137 | gettext_noop ("Invalid regular expression") /* REG_BADPAT */ | ||
| 138 | "\0" | ||
| 139 | #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") | ||
| 140 | gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ | ||
| 141 | "\0" | ||
| 142 | #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") | ||
| 143 | gettext_noop ("Invalid character class name") /* REG_ECTYPE */ | ||
| 144 | "\0" | ||
| 145 | #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") | ||
| 146 | gettext_noop ("Trailing backslash") /* REG_EESCAPE */ | ||
| 147 | "\0" | ||
| 148 | #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") | ||
| 149 | gettext_noop ("Invalid back reference") /* REG_ESUBREG */ | ||
| 150 | "\0" | ||
| 151 | #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") | ||
| 152 | gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ | ||
| 153 | "\0" | ||
| 154 | #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") | ||
| 155 | gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ | ||
| 156 | "\0" | ||
| 157 | #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") | ||
| 158 | gettext_noop ("Unmatched \\{") /* REG_EBRACE */ | ||
| 159 | "\0" | ||
| 160 | #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") | ||
| 161 | gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ | ||
| 162 | "\0" | ||
| 163 | #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") | ||
| 164 | gettext_noop ("Invalid range end") /* REG_ERANGE */ | ||
| 165 | "\0" | ||
| 166 | #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") | ||
| 167 | gettext_noop ("Memory exhausted") /* REG_ESPACE */ | ||
| 168 | "\0" | ||
| 169 | #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") | ||
| 170 | gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ | ||
| 171 | "\0" | ||
| 172 | #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") | ||
| 173 | gettext_noop ("Premature end of regular expression") /* REG_EEND */ | ||
| 174 | "\0" | ||
| 175 | #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") | ||
| 176 | gettext_noop ("Regular expression too big") /* REG_ESIZE */ | ||
| 177 | "\0" | ||
| 178 | #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") | ||
| 179 | gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ | ||
| 180 | }; | ||
| 181 | |||
| 182 | const size_t __re_error_msgid_idx[] attribute_hidden = | ||
| 183 | { | ||
| 184 | REG_NOERROR_IDX, | ||
| 185 | REG_NOMATCH_IDX, | ||
| 186 | REG_BADPAT_IDX, | ||
| 187 | REG_ECOLLATE_IDX, | ||
| 188 | REG_ECTYPE_IDX, | ||
| 189 | REG_EESCAPE_IDX, | ||
| 190 | REG_ESUBREG_IDX, | ||
| 191 | REG_EBRACK_IDX, | ||
| 192 | REG_EPAREN_IDX, | ||
| 193 | REG_EBRACE_IDX, | ||
| 194 | REG_BADBR_IDX, | ||
| 195 | REG_ERANGE_IDX, | ||
| 196 | REG_ESPACE_IDX, | ||
| 197 | REG_BADRPT_IDX, | ||
| 198 | REG_EEND_IDX, | ||
| 199 | REG_ESIZE_IDX, | ||
| 200 | REG_ERPAREN_IDX | ||
| 201 | }; | ||
| 202 | |||
| 203 | /* Entry points for GNU code. */ | ||
| 204 | |||
| 205 | /* re_compile_pattern is the GNU regular expression compiler: it | ||
| 206 | compiles PATTERN (of length LENGTH) and puts the result in BUFP. | ||
| 207 | Returns 0 if the pattern was valid, otherwise an error string. | ||
| 208 | |||
| 209 | Assumes the `re_allocated' (and perhaps `re_buffer') and `translate' fields | ||
| 210 | are set in BUFP on entry. */ | ||
| 211 | |||
| 212 | const char * | ||
| 213 | re_compile_pattern (const char *pattern, size_t length, | ||
| 214 | struct re_pattern_buffer *bufp) | ||
| 215 | { | ||
| 216 | reg_errcode_t ret; | ||
| 217 | |||
| 218 | /* And GNU code determines whether or not to get register information | ||
| 219 | by passing null for the REGS argument to re_match, etc., not by | ||
| 220 | setting re_no_sub, unless REG_NO_SUB is set. */ | ||
| 221 | bufp->re_no_sub = !!(re_syntax_options & REG_NO_SUB); | ||
| 222 | |||
| 223 | /* Match anchors at newline. */ | ||
| 224 | bufp->re_newline_anchor = 1; | ||
| 225 | |||
| 226 | ret = re_compile_internal (bufp, pattern, length, re_syntax_options); | ||
| 227 | |||
| 228 | if (!ret) | ||
| 229 | return NULL; | ||
| 230 | return gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | ||
| 231 | } | ||
| 232 | #ifdef _LIBC | ||
| 233 | weak_alias (__re_compile_pattern, re_compile_pattern) | ||
| 234 | #endif | ||
| 235 | |||
| 236 | /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can | ||
| 237 | also be assigned to arbitrarily: each pattern buffer stores its own | ||
| 238 | syntax, so it can be changed between regex compilations. */ | ||
| 239 | /* This has no initializer because initialized variables in Emacs | ||
| 240 | become read-only after dumping. */ | ||
| 241 | reg_syntax_t re_syntax_options; | ||
| 242 | |||
| 243 | |||
| 244 | /* Specify the precise syntax of regexps for compilation. This provides | ||
| 245 | for compatibility for various utilities which historically have | ||
| 246 | different, incompatible syntaxes. | ||
| 247 | |||
| 248 | The argument SYNTAX is a bit mask comprised of the various bits | ||
| 249 | defined in regex.h. We return the old syntax. */ | ||
| 250 | |||
| 251 | reg_syntax_t | ||
| 252 | re_set_syntax (reg_syntax_t syntax) | ||
| 253 | { | ||
| 254 | reg_syntax_t ret = re_syntax_options; | ||
| 255 | |||
| 256 | re_syntax_options = syntax; | ||
| 257 | return ret; | ||
| 258 | } | ||
| 259 | #ifdef _LIBC | ||
| 260 | weak_alias (__re_set_syntax, re_set_syntax) | ||
| 261 | #endif | ||
| 262 | |||
| 263 | int | ||
| 264 | re_compile_fastmap (struct re_pattern_buffer *bufp) | ||
| 265 | { | ||
| 266 | re_dfa_t *dfa = (re_dfa_t *) bufp->re_buffer; | ||
| 267 | char *fastmap = bufp->re_fastmap; | ||
| 268 | |||
| 269 | memset (fastmap, '\0', sizeof (char) * SBC_MAX); | ||
| 270 | re_compile_fastmap_iter (bufp, dfa->init_state, fastmap); | ||
| 271 | if (dfa->init_state != dfa->init_state_word) | ||
| 272 | re_compile_fastmap_iter (bufp, dfa->init_state_word, fastmap); | ||
| 273 | if (dfa->init_state != dfa->init_state_nl) | ||
| 274 | re_compile_fastmap_iter (bufp, dfa->init_state_nl, fastmap); | ||
| 275 | if (dfa->init_state != dfa->init_state_begbuf) | ||
| 276 | re_compile_fastmap_iter (bufp, dfa->init_state_begbuf, fastmap); | ||
| 277 | bufp->re_fastmap_accurate = 1; | ||
| 278 | return 0; | ||
| 279 | } | ||
| 280 | #ifdef _LIBC | ||
| 281 | weak_alias (__re_compile_fastmap, re_compile_fastmap) | ||
| 282 | #endif | ||
| 283 | |||
| 284 | static inline void | ||
| 285 | __attribute ((always_inline)) | ||
| 286 | re_set_fastmap (char *fastmap, bool icase, int ch) | ||
| 287 | { | ||
| 288 | fastmap[ch] = 1; | ||
| 289 | if (icase) | ||
| 290 | fastmap[tolower (ch)] = 1; | ||
| 291 | } | ||
| 292 | |||
| 293 | /* Helper function for re_compile_fastmap. | ||
| 294 | Compile fastmap for the initial_state INIT_STATE. */ | ||
| 295 | |||
| 296 | static void | ||
| 297 | re_compile_fastmap_iter (regex_t *bufp, const re_dfastate_t *init_state, | ||
| 298 | char *fastmap) | ||
| 299 | { | ||
| 300 | re_dfa_t *dfa = (re_dfa_t *) bufp->re_buffer; | ||
| 301 | Idx node_cnt; | ||
| 302 | bool icase = (dfa->mb_cur_max == 1 && (bufp->re_syntax & REG_IGNORE_CASE)); | ||
| 303 | for (node_cnt = 0; node_cnt < init_state->nodes.nelem; ++node_cnt) | ||
| 304 | { | ||
| 305 | Idx node = init_state->nodes.elems[node_cnt]; | ||
| 306 | re_token_type_t type = dfa->nodes[node].type; | ||
| 307 | |||
| 308 | if (type == CHARACTER) | ||
| 309 | { | ||
| 310 | re_set_fastmap (fastmap, icase, dfa->nodes[node].opr.c); | ||
| 311 | #ifdef RE_ENABLE_I18N | ||
| 312 | if ((bufp->re_syntax & REG_IGNORE_CASE) && dfa->mb_cur_max > 1) | ||
| 313 | { | ||
| 314 | unsigned char buf[MB_LEN_MAX]; | ||
| 315 | unsigned char *p; | ||
| 316 | wchar_t wc; | ||
| 317 | mbstate_t state; | ||
| 318 | |||
| 319 | p = buf; | ||
| 320 | *p++ = dfa->nodes[node].opr.c; | ||
| 321 | while (++node < dfa->nodes_len | ||
| 322 | && dfa->nodes[node].type == CHARACTER | ||
| 323 | && dfa->nodes[node].mb_partial) | ||
| 324 | *p++ = dfa->nodes[node].opr.c; | ||
| 325 | memset (&state, 0, sizeof (state)); | ||
| 326 | if (mbrtowc (&wc, (const char *) buf, p - buf, | ||
| 327 | &state) == p - buf | ||
| 328 | && (__wcrtomb ((char *) buf, towlower (wc), &state) | ||
| 329 | != (size_t) -1)) | ||
| 330 | re_set_fastmap (fastmap, false, buf[0]); | ||
| 331 | } | ||
| 332 | #endif | ||
| 333 | } | ||
| 334 | else if (type == SIMPLE_BRACKET) | ||
| 335 | { | ||
| 336 | int i, j, ch; | ||
| 337 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
| 338 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
| 339 | if (dfa->nodes[node].opr.sbcset[i] & ((bitset_word) 1 << j)) | ||
| 340 | re_set_fastmap (fastmap, icase, ch); | ||
| 341 | } | ||
| 342 | #ifdef RE_ENABLE_I18N | ||
| 343 | else if (type == COMPLEX_BRACKET) | ||
| 344 | { | ||
| 345 | Idx i; | ||
| 346 | re_charset_t *cset = dfa->nodes[node].opr.mbcset; | ||
| 347 | if (cset->non_match || cset->ncoll_syms || cset->nequiv_classes | ||
| 348 | || cset->nranges || cset->nchar_classes) | ||
| 349 | { | ||
| 350 | # ifdef _LIBC | ||
| 351 | if (_NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES) != 0) | ||
| 352 | { | ||
| 353 | /* In this case we want to catch the bytes which are | ||
| 354 | the first byte of any collation elements. | ||
| 355 | e.g. In da_DK, we want to catch 'a' since "aa" | ||
| 356 | is a valid collation element, and don't catch | ||
| 357 | 'b' since 'b' is the only collation element | ||
| 358 | which starts from 'b'. */ | ||
| 359 | const int32_t *table = (const int32_t *) | ||
| 360 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
| 361 | for (i = 0; i < SBC_MAX; ++i) | ||
| 362 | if (table[i] < 0) | ||
| 363 | re_set_fastmap (fastmap, icase, i); | ||
| 364 | } | ||
| 365 | # else | ||
| 366 | if (dfa->mb_cur_max > 1) | ||
| 367 | for (i = 0; i < SBC_MAX; ++i) | ||
| 368 | if (__btowc (i) == WEOF) | ||
| 369 | re_set_fastmap (fastmap, icase, i); | ||
| 370 | # endif /* not _LIBC */ | ||
| 371 | } | ||
| 372 | for (i = 0; i < cset->nmbchars; ++i) | ||
| 373 | { | ||
| 374 | char buf[256]; | ||
| 375 | mbstate_t state; | ||
| 376 | memset (&state, '\0', sizeof (state)); | ||
| 377 | if (__wcrtomb (buf, cset->mbchars[i], &state) != (size_t) -1) | ||
| 378 | re_set_fastmap (fastmap, icase, *(unsigned char *) buf); | ||
| 379 | if ((bufp->re_syntax & REG_IGNORE_CASE) && dfa->mb_cur_max > 1) | ||
| 380 | { | ||
| 381 | if (__wcrtomb (buf, towlower (cset->mbchars[i]), &state) | ||
| 382 | != (size_t) -1) | ||
| 383 | re_set_fastmap (fastmap, false, *(unsigned char *) buf); | ||
| 384 | } | ||
| 385 | } | ||
| 386 | } | ||
| 387 | #endif /* RE_ENABLE_I18N */ | ||
| 388 | else if (type == OP_PERIOD | ||
| 389 | #ifdef RE_ENABLE_I18N | ||
| 390 | || type == OP_UTF8_PERIOD | ||
| 391 | #endif /* RE_ENABLE_I18N */ | ||
| 392 | || type == END_OF_RE) | ||
| 393 | { | ||
| 394 | memset (fastmap, '\1', sizeof (char) * SBC_MAX); | ||
| 395 | if (type == END_OF_RE) | ||
| 396 | bufp->re_can_be_null = 1; | ||
| 397 | return; | ||
| 398 | } | ||
| 399 | } | ||
| 400 | } | ||
| 401 | |||
| 402 | /* Entry point for POSIX code. */ | ||
| 403 | /* regcomp takes a regular expression as a string and compiles it. | ||
| 404 | |||
| 405 | PREG is a regex_t *. We do not expect any fields to be initialized, | ||
| 406 | since POSIX says we shouldn't. Thus, we set | ||
| 407 | |||
| 408 | `re_buffer' to the compiled pattern; | ||
| 409 | `re_used' to the length of the compiled pattern; | ||
| 410 | `re_syntax' to REG_SYNTAX_POSIX_EXTENDED if the | ||
| 411 | REG_EXTENDED bit in CFLAGS is set; otherwise, to | ||
| 412 | REG_SYNTAX_POSIX_BASIC; | ||
| 413 | `re_newline_anchor' to REG_NEWLINE being set in CFLAGS; | ||
| 414 | `re_fastmap' to an allocated space for the fastmap; | ||
| 415 | `re_fastmap_accurate' to zero; | ||
| 416 | `re_nsub' to the number of subexpressions in PATTERN. | ||
| 417 | |||
| 418 | PATTERN is the address of the pattern string. | ||
| 419 | |||
| 420 | CFLAGS is a series of bits which affect compilation. | ||
| 421 | |||
| 422 | If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we | ||
| 423 | use POSIX basic syntax. | ||
| 424 | |||
| 425 | If REG_NEWLINE is set, then . and [^...] don't match newline. | ||
| 426 | Also, regexec will try a match beginning after every newline. | ||
| 427 | |||
| 428 | If REG_ICASE is set, then we considers upper- and lowercase | ||
| 429 | versions of letters to be equivalent when matching. | ||
| 430 | |||
| 431 | If REG_NOSUB is set, then when PREG is passed to regexec, that | ||
| 432 | routine will report only success or failure, and nothing about the | ||
| 433 | registers. | ||
| 434 | |||
| 435 | It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for | ||
| 436 | the return codes and their meanings.) */ | ||
| 437 | |||
| 438 | int | ||
| 439 | regcomp (regex_t *__restrict preg, const char *__restrict pattern, int cflags) | ||
| 440 | { | ||
| 441 | reg_errcode_t ret; | ||
| 442 | reg_syntax_t syntax = ((cflags & REG_EXTENDED) ? REG_SYNTAX_POSIX_EXTENDED | ||
| 443 | : REG_SYNTAX_POSIX_BASIC); | ||
| 444 | |||
| 445 | preg->re_buffer = NULL; | ||
| 446 | preg->re_allocated = 0; | ||
| 447 | preg->re_used = 0; | ||
| 448 | |||
| 449 | /* Try to allocate space for the fastmap. */ | ||
| 450 | preg->re_fastmap = re_malloc (char, SBC_MAX); | ||
| 451 | if (BE (preg->re_fastmap == NULL, 0)) | ||
| 452 | return REG_ESPACE; | ||
| 453 | |||
| 454 | syntax |= (cflags & REG_ICASE) ? REG_IGNORE_CASE : 0; | ||
| 455 | |||
| 456 | /* If REG_NEWLINE is set, newlines are treated differently. */ | ||
| 457 | if (cflags & REG_NEWLINE) | ||
| 458 | { /* REG_NEWLINE implies neither . nor [^...] match newline. */ | ||
| 459 | syntax &= ~REG_DOT_NEWLINE; | ||
| 460 | syntax |= REG_HAT_LISTS_NOT_NEWLINE; | ||
| 461 | /* It also changes the matching behavior. */ | ||
| 462 | preg->re_newline_anchor = 1; | ||
| 463 | } | ||
| 464 | else | ||
| 465 | preg->re_newline_anchor = 0; | ||
| 466 | preg->re_no_sub = !!(cflags & REG_NOSUB); | ||
| 467 | preg->re_translate = NULL; | ||
| 468 | |||
| 469 | ret = re_compile_internal (preg, pattern, strlen (pattern), syntax); | ||
| 470 | |||
| 471 | /* POSIX doesn't distinguish between an unmatched open-group and an | ||
| 472 | unmatched close-group: both are REG_EPAREN. */ | ||
| 473 | if (ret == REG_ERPAREN) | ||
| 474 | ret = REG_EPAREN; | ||
| 475 | |||
| 476 | /* We have already checked preg->re_fastmap != NULL. */ | ||
| 477 | if (BE (ret == REG_NOERROR, 1)) | ||
| 478 | /* Compute the fastmap now, since regexec cannot modify the pattern | ||
| 479 | buffer. This function never fails in this implementation. */ | ||
| 480 | (void) re_compile_fastmap (preg); | ||
| 481 | else | ||
| 482 | { | ||
| 483 | /* Some error occurred while compiling the expression. */ | ||
| 484 | re_free (preg->re_fastmap); | ||
| 485 | preg->re_fastmap = NULL; | ||
| 486 | } | ||
| 487 | |||
| 488 | return (int) ret; | ||
| 489 | } | ||
| 490 | #ifdef _LIBC | ||
| 491 | weak_alias (__regcomp, regcomp) | ||
| 492 | #endif | ||
| 493 | |||
| 494 | /* Returns a message corresponding to an error code, ERRCODE, returned | ||
| 495 | from either regcomp or regexec. We don't use PREG here. */ | ||
| 496 | |||
| 497 | size_t | ||
| 498 | regerror (int errcode, const regex_t *__restrict preg, | ||
| 499 | char *__restrict errbuf, size_t errbuf_size) | ||
| 500 | { | ||
| 501 | const char *msg; | ||
| 502 | size_t msg_size; | ||
| 503 | |||
| 504 | if (BE (errcode < 0 | ||
| 505 | || errcode >= (int) (sizeof (__re_error_msgid_idx) | ||
| 506 | / sizeof (__re_error_msgid_idx[0])), 0)) | ||
| 507 | /* Only error codes returned by the rest of the code should be passed | ||
| 508 | to this routine. If we are given anything else, or if other regex | ||
| 509 | code generates an invalid error code, then the program has a bug. | ||
| 510 | Dump core so we can fix it. */ | ||
| 511 | abort (); | ||
| 512 | |||
| 513 | msg = gettext (__re_error_msgid + __re_error_msgid_idx[errcode]); | ||
| 514 | |||
| 515 | msg_size = strlen (msg) + 1; /* Includes the null. */ | ||
| 516 | |||
| 517 | if (BE (errbuf_size != 0, 1)) | ||
| 518 | { | ||
| 519 | if (BE (msg_size > errbuf_size, 0)) | ||
| 520 | { | ||
| 521 | #if defined HAVE_MEMPCPY || defined _LIBC | ||
| 522 | *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0'; | ||
| 523 | #else | ||
| 524 | memcpy (errbuf, msg, errbuf_size - 1); | ||
| 525 | errbuf[errbuf_size - 1] = 0; | ||
| 526 | #endif | ||
| 527 | } | ||
| 528 | else | ||
| 529 | memcpy (errbuf, msg, msg_size); | ||
| 530 | } | ||
| 531 | |||
| 532 | return msg_size; | ||
| 533 | } | ||
| 534 | #ifdef _LIBC | ||
| 535 | weak_alias (__regerror, regerror) | ||
| 536 | #endif | ||
| 537 | |||
| 538 | |||
| 539 | #ifdef RE_ENABLE_I18N | ||
| 540 | /* This static array is used for the map to single-byte characters when | ||
| 541 | UTF-8 is used. Otherwise we would allocate memory just to initialize | ||
| 542 | it the same all the time. UTF-8 is the preferred encoding so this is | ||
| 543 | a worthwhile optimization. */ | ||
| 544 | static const bitset utf8_sb_map = | ||
| 545 | { | ||
| 546 | /* Set the first 128 bits. */ | ||
| 547 | # if 2 < BITSET_WORDS | ||
| 548 | BITSET_WORD_MAX, | ||
| 549 | # endif | ||
| 550 | # if 4 < BITSET_WORDS | ||
| 551 | BITSET_WORD_MAX, | ||
| 552 | # endif | ||
| 553 | # if 6 < BITSET_WORDS | ||
| 554 | BITSET_WORD_MAX, | ||
| 555 | # endif | ||
| 556 | # if 8 < BITSET_WORDS | ||
| 557 | # error "Invalid BITSET_WORDS" | ||
| 558 | # endif | ||
| 559 | (BITSET_WORD_MAX | ||
| 560 | >> (SBC_MAX % BITSET_WORD_BITS == 0 | ||
| 561 | ? 0 | ||
| 562 | : BITSET_WORD_BITS - SBC_MAX % BITSET_WORD_BITS)) | ||
| 563 | }; | ||
| 564 | #endif | ||
| 565 | |||
| 566 | |||
| 567 | static void | ||
| 568 | free_dfa_content (re_dfa_t *dfa) | ||
| 569 | { | ||
| 570 | Idx i, j; | ||
| 571 | |||
| 572 | if (dfa->nodes) | ||
| 573 | for (i = 0; i < dfa->nodes_len; ++i) | ||
| 574 | free_token (dfa->nodes + i); | ||
| 575 | re_free (dfa->nexts); | ||
| 576 | for (i = 0; i < dfa->nodes_len; ++i) | ||
| 577 | { | ||
| 578 | if (dfa->eclosures != NULL) | ||
| 579 | re_node_set_free (dfa->eclosures + i); | ||
| 580 | if (dfa->inveclosures != NULL) | ||
| 581 | re_node_set_free (dfa->inveclosures + i); | ||
| 582 | if (dfa->edests != NULL) | ||
| 583 | re_node_set_free (dfa->edests + i); | ||
| 584 | } | ||
| 585 | re_free (dfa->edests); | ||
| 586 | re_free (dfa->eclosures); | ||
| 587 | re_free (dfa->inveclosures); | ||
| 588 | re_free (dfa->nodes); | ||
| 589 | |||
| 590 | if (dfa->state_table) | ||
| 591 | for (i = 0; i <= dfa->state_hash_mask; ++i) | ||
| 592 | { | ||
| 593 | struct re_state_table_entry *entry = dfa->state_table + i; | ||
| 594 | for (j = 0; j < entry->num; ++j) | ||
| 595 | { | ||
| 596 | re_dfastate_t *state = entry->array[j]; | ||
| 597 | free_state (state); | ||
| 598 | } | ||
| 599 | re_free (entry->array); | ||
| 600 | } | ||
| 601 | re_free (dfa->state_table); | ||
| 602 | #ifdef RE_ENABLE_I18N | ||
| 603 | if (dfa->sb_char != utf8_sb_map) | ||
| 604 | re_free (dfa->sb_char); | ||
| 605 | #endif | ||
| 606 | re_free (dfa->subexp_map); | ||
| 607 | #ifdef DEBUG | ||
| 608 | re_free (dfa->re_str); | ||
| 609 | #endif | ||
| 610 | |||
| 611 | re_free (dfa); | ||
| 612 | } | ||
| 613 | |||
| 614 | |||
| 615 | /* Free dynamically allocated space used by PREG. */ | ||
| 616 | |||
| 617 | void | ||
| 618 | regfree (regex_t *preg) | ||
| 619 | { | ||
| 620 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 621 | if (BE (dfa != NULL, 1)) | ||
| 622 | free_dfa_content (dfa); | ||
| 623 | preg->re_buffer = NULL; | ||
| 624 | preg->re_allocated = 0; | ||
| 625 | |||
| 626 | re_free (preg->re_fastmap); | ||
| 627 | preg->re_fastmap = NULL; | ||
| 628 | |||
| 629 | re_free (preg->re_translate); | ||
| 630 | preg->re_translate = NULL; | ||
| 631 | } | ||
| 632 | #ifdef _LIBC | ||
| 633 | weak_alias (__regfree, regfree) | ||
| 634 | #endif | ||
| 635 | |||
| 636 | /* Entry points compatible with 4.2 BSD regex library. We don't define | ||
| 637 | them unless specifically requested. */ | ||
| 638 | |||
| 639 | #if defined _REGEX_RE_COMP || defined _LIBC | ||
| 640 | |||
| 641 | /* BSD has one and only one pattern buffer. */ | ||
| 642 | static struct re_pattern_buffer re_comp_buf; | ||
| 643 | |||
| 644 | char * | ||
| 645 | # ifdef _LIBC | ||
| 646 | /* Make these definitions weak in libc, so POSIX programs can redefine | ||
| 647 | these names if they don't use our functions, and still use | ||
| 648 | regcomp/regexec above without link errors. */ | ||
| 649 | weak_function | ||
| 650 | # endif | ||
| 651 | re_comp (const char *s) | ||
| 652 | { | ||
| 653 | reg_errcode_t ret; | ||
| 654 | char *fastmap; | ||
| 655 | |||
| 656 | if (!s) | ||
| 657 | { | ||
| 658 | if (!re_comp_buf.re_buffer) | ||
| 659 | return gettext ("No previous regular expression"); | ||
| 660 | return 0; | ||
| 661 | } | ||
| 662 | |||
| 663 | if (re_comp_buf.re_buffer) | ||
| 664 | { | ||
| 665 | fastmap = re_comp_buf.re_fastmap; | ||
| 666 | re_comp_buf.re_fastmap = NULL; | ||
| 667 | __regfree (&re_comp_buf); | ||
| 668 | memset (&re_comp_buf, '\0', sizeof (re_comp_buf)); | ||
| 669 | re_comp_buf.re_fastmap = fastmap; | ||
| 670 | } | ||
| 671 | |||
| 672 | if (re_comp_buf.re_fastmap == NULL) | ||
| 673 | { | ||
| 674 | re_comp_buf.re_fastmap = (char *) malloc (SBC_MAX); | ||
| 675 | if (re_comp_buf.re_fastmap == NULL) | ||
| 676 | return (char *) gettext (__re_error_msgid | ||
| 677 | + __re_error_msgid_idx[(int) REG_ESPACE]); | ||
| 678 | } | ||
| 679 | |||
| 680 | /* Since `re_exec' always passes NULL for the `regs' argument, we | ||
| 681 | don't need to initialize the pattern buffer fields which affect it. */ | ||
| 682 | |||
| 683 | /* Match anchors at newlines. */ | ||
| 684 | re_comp_buf.re_newline_anchor = 1; | ||
| 685 | |||
| 686 | ret = re_compile_internal (&re_comp_buf, s, strlen (s), re_syntax_options); | ||
| 687 | |||
| 688 | if (!ret) | ||
| 689 | return NULL; | ||
| 690 | |||
| 691 | /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ | ||
| 692 | return (char *) gettext (__re_error_msgid + __re_error_msgid_idx[(int) ret]); | ||
| 693 | } | ||
| 694 | |||
| 695 | #ifdef _LIBC | ||
| 696 | libc_freeres_fn (free_mem) | ||
| 697 | { | ||
| 698 | __regfree (&re_comp_buf); | ||
| 699 | } | ||
| 700 | #endif | ||
| 701 | |||
| 702 | #endif /* _REGEX_RE_COMP */ | ||
| 703 | |||
| 704 | /* Internal entry point. | ||
| 705 | Compile the regular expression PATTERN, whose length is LENGTH. | ||
| 706 | SYNTAX indicate regular expression's syntax. */ | ||
| 707 | |||
| 708 | static reg_errcode_t | ||
| 709 | re_compile_internal (regex_t *preg, const char *pattern, Idx length, | ||
| 710 | reg_syntax_t syntax) | ||
| 711 | { | ||
| 712 | reg_errcode_t err = REG_NOERROR; | ||
| 713 | re_dfa_t *dfa; | ||
| 714 | re_string_t regexp; | ||
| 715 | |||
| 716 | /* Initialize the pattern buffer. */ | ||
| 717 | preg->re_fastmap_accurate = 0; | ||
| 718 | preg->re_syntax = syntax; | ||
| 719 | preg->re_not_bol = preg->re_not_eol = 0; | ||
| 720 | preg->re_used = 0; | ||
| 721 | preg->re_nsub = 0; | ||
| 722 | preg->re_can_be_null = 0; | ||
| 723 | preg->re_regs_allocated = REG_UNALLOCATED; | ||
| 724 | |||
| 725 | /* Initialize the dfa. */ | ||
| 726 | dfa = (re_dfa_t *) preg->re_buffer; | ||
| 727 | if (BE (preg->re_allocated < sizeof (re_dfa_t), 0)) | ||
| 728 | { | ||
| 729 | /* If zero allocated, but buffer is non-null, try to realloc | ||
| 730 | enough space. This loses if buffer's address is bogus, but | ||
| 731 | that is the user's responsibility. If buffer is null this | ||
| 732 | is a simple allocation. */ | ||
| 733 | dfa = re_realloc (preg->re_buffer, re_dfa_t, 1); | ||
| 734 | if (dfa == NULL) | ||
| 735 | return REG_ESPACE; | ||
| 736 | preg->re_allocated = sizeof (re_dfa_t); | ||
| 737 | preg->re_buffer = (unsigned char *) dfa; | ||
| 738 | } | ||
| 739 | preg->re_used = sizeof (re_dfa_t); | ||
| 740 | |||
| 741 | __libc_lock_init (dfa->lock); | ||
| 742 | |||
| 743 | err = init_dfa (dfa, length); | ||
| 744 | if (BE (err != REG_NOERROR, 0)) | ||
| 745 | { | ||
| 746 | free_dfa_content (dfa); | ||
| 747 | preg->re_buffer = NULL; | ||
| 748 | preg->re_allocated = 0; | ||
| 749 | return err; | ||
| 750 | } | ||
| 751 | #ifdef DEBUG | ||
| 752 | dfa->re_str = re_malloc (char, length + 1); | ||
| 753 | strncpy (dfa->re_str, pattern, length + 1); | ||
| 754 | #endif | ||
| 755 | |||
| 756 | err = re_string_construct (®exp, pattern, length, preg->re_translate, | ||
| 757 | syntax & REG_IGNORE_CASE, dfa); | ||
| 758 | if (BE (err != REG_NOERROR, 0)) | ||
| 759 | { | ||
| 760 | re_compile_internal_free_return: | ||
| 761 | free_workarea_compile (preg); | ||
| 762 | re_string_destruct (®exp); | ||
| 763 | free_dfa_content (dfa); | ||
| 764 | preg->re_buffer = NULL; | ||
| 765 | preg->re_allocated = 0; | ||
| 766 | return err; | ||
| 767 | } | ||
| 768 | |||
| 769 | /* Parse the regular expression, and build a structure tree. */ | ||
| 770 | preg->re_nsub = 0; | ||
| 771 | dfa->str_tree = parse (®exp, preg, syntax, &err); | ||
| 772 | if (BE (dfa->str_tree == NULL, 0)) | ||
| 773 | goto re_compile_internal_free_return; | ||
| 774 | |||
| 775 | /* Analyze the tree and create the nfa. */ | ||
| 776 | err = analyze (preg); | ||
| 777 | if (BE (err != REG_NOERROR, 0)) | ||
| 778 | goto re_compile_internal_free_return; | ||
| 779 | |||
| 780 | #ifdef RE_ENABLE_I18N | ||
| 781 | /* If possible, do searching in single byte encoding to speed things up. */ | ||
| 782 | if (dfa->is_utf8 && !(syntax & REG_IGNORE_CASE) && preg->re_translate == NULL) | ||
| 783 | optimize_utf8 (dfa); | ||
| 784 | #endif | ||
| 785 | |||
| 786 | /* Then create the initial state of the dfa. */ | ||
| 787 | err = create_initial_state (dfa); | ||
| 788 | |||
| 789 | /* Release work areas. */ | ||
| 790 | free_workarea_compile (preg); | ||
| 791 | re_string_destruct (®exp); | ||
| 792 | |||
| 793 | if (BE (err != REG_NOERROR, 0)) | ||
| 794 | { | ||
| 795 | free_dfa_content (dfa); | ||
| 796 | preg->re_buffer = NULL; | ||
| 797 | preg->re_allocated = 0; | ||
| 798 | } | ||
| 799 | |||
| 800 | return err; | ||
| 801 | } | ||
| 802 | |||
| 803 | /* Initialize DFA. We use the length of the regular expression PAT_LEN | ||
| 804 | as the initial length of some arrays. */ | ||
| 805 | |||
| 806 | static reg_errcode_t | ||
| 807 | init_dfa (re_dfa_t *dfa, Idx pat_len) | ||
| 808 | { | ||
| 809 | __re_size_t table_size; | ||
| 810 | #ifndef _LIBC | ||
| 811 | char *codeset_name; | ||
| 812 | #endif | ||
| 813 | |||
| 814 | memset (dfa, '\0', sizeof (re_dfa_t)); | ||
| 815 | |||
| 816 | /* Force allocation of str_tree_storage the first time. */ | ||
| 817 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | ||
| 818 | |||
| 819 | dfa->nodes_alloc = pat_len + 1; | ||
| 820 | dfa->nodes = re_xmalloc (re_token_t, dfa->nodes_alloc); | ||
| 821 | |||
| 822 | /* table_size = 2 ^ ceil(log pat_len) */ | ||
| 823 | for (table_size = 1; table_size <= pat_len; table_size <<= 1) | ||
| 824 | if (0 < (Idx) -1 && table_size == 0) | ||
| 825 | return REG_ESPACE; | ||
| 826 | |||
| 827 | dfa->state_table = re_calloc (struct re_state_table_entry, table_size); | ||
| 828 | dfa->state_hash_mask = table_size - 1; | ||
| 829 | |||
| 830 | dfa->mb_cur_max = MB_CUR_MAX; | ||
| 831 | #ifdef _LIBC | ||
| 832 | if (dfa->mb_cur_max == 6 | ||
| 833 | && strcmp (_NL_CURRENT (LC_CTYPE, _NL_CTYPE_CODESET_NAME), "UTF-8") == 0) | ||
| 834 | dfa->is_utf8 = 1; | ||
| 835 | dfa->map_notascii = (_NL_CURRENT_WORD (LC_CTYPE, _NL_CTYPE_MAP_TO_NONASCII) | ||
| 836 | != 0); | ||
| 837 | #else | ||
| 838 | # ifdef HAVE_LANGINFO_CODESET | ||
| 839 | codeset_name = nl_langinfo (CODESET); | ||
| 840 | # else | ||
| 841 | codeset_name = getenv ("LC_ALL"); | ||
| 842 | if (codeset_name == NULL || codeset_name[0] == '\0') | ||
| 843 | codeset_name = getenv ("LC_CTYPE"); | ||
| 844 | if (codeset_name == NULL || codeset_name[0] == '\0') | ||
| 845 | codeset_name = getenv ("LANG"); | ||
| 846 | if (codeset_name == NULL) | ||
| 847 | codeset_name = ""; | ||
| 848 | else if (strchr (codeset_name, '.') != NULL) | ||
| 849 | codeset_name = strchr (codeset_name, '.') + 1; | ||
| 850 | # endif | ||
| 851 | |||
| 852 | if (strcasecmp (codeset_name, "UTF-8") == 0 | ||
| 853 | || strcasecmp (codeset_name, "UTF8") == 0) | ||
| 854 | dfa->is_utf8 = 1; | ||
| 855 | |||
| 856 | /* We check exhaustively in the loop below if this charset is a | ||
| 857 | superset of ASCII. */ | ||
| 858 | dfa->map_notascii = 0; | ||
| 859 | #endif | ||
| 860 | |||
| 861 | #ifdef RE_ENABLE_I18N | ||
| 862 | if (dfa->mb_cur_max > 1) | ||
| 863 | { | ||
| 864 | if (dfa->is_utf8) | ||
| 865 | dfa->sb_char = (re_bitset_ptr_t) utf8_sb_map; | ||
| 866 | else | ||
| 867 | { | ||
| 868 | int i, j, ch; | ||
| 869 | |||
| 870 | dfa->sb_char = re_calloc (bitset_word, BITSET_WORDS); | ||
| 871 | if (BE (dfa->sb_char == NULL, 0)) | ||
| 872 | return REG_ESPACE; | ||
| 873 | |||
| 874 | /* Set the bits corresponding to single byte chars. */ | ||
| 875 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
| 876 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
| 877 | { | ||
| 878 | wint_t wch = __btowc (ch); | ||
| 879 | if (wch != WEOF) | ||
| 880 | dfa->sb_char[i] |= (bitset_word) 1 << j; | ||
| 881 | # ifndef _LIBC | ||
| 882 | if (isascii (ch) && wch != ch) | ||
| 883 | dfa->map_notascii = 1; | ||
| 884 | # endif | ||
| 885 | } | ||
| 886 | } | ||
| 887 | } | ||
| 888 | #endif | ||
| 889 | |||
| 890 | if (BE (dfa->nodes == NULL || dfa->state_table == NULL, 0)) | ||
| 891 | return REG_ESPACE; | ||
| 892 | return REG_NOERROR; | ||
| 893 | } | ||
| 894 | |||
| 895 | /* Initialize WORD_CHAR table, which indicate which character is | ||
| 896 | "word". In this case "word" means that it is the word construction | ||
| 897 | character used by some operators like "\<", "\>", etc. */ | ||
| 898 | |||
| 899 | static void | ||
| 900 | init_word_char (re_dfa_t *dfa) | ||
| 901 | { | ||
| 902 | int i, j, ch; | ||
| 903 | dfa->word_ops_used = 1; | ||
| 904 | for (i = 0, ch = 0; i < BITSET_WORDS; ++i) | ||
| 905 | for (j = 0; j < BITSET_WORD_BITS; ++j, ++ch) | ||
| 906 | if (isalnum (ch) || ch == '_') | ||
| 907 | dfa->word_char[i] |= (bitset_word) 1 << j; | ||
| 908 | } | ||
| 909 | |||
| 910 | /* Free the work area which are only used while compiling. */ | ||
| 911 | |||
| 912 | static void | ||
| 913 | free_workarea_compile (regex_t *preg) | ||
| 914 | { | ||
| 915 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 916 | bin_tree_storage_t *storage, *next; | ||
| 917 | for (storage = dfa->str_tree_storage; storage; storage = next) | ||
| 918 | { | ||
| 919 | next = storage->next; | ||
| 920 | re_free (storage); | ||
| 921 | } | ||
| 922 | dfa->str_tree_storage = NULL; | ||
| 923 | dfa->str_tree_storage_idx = BIN_TREE_STORAGE_SIZE; | ||
| 924 | dfa->str_tree = NULL; | ||
| 925 | re_free (dfa->org_indices); | ||
| 926 | dfa->org_indices = NULL; | ||
| 927 | } | ||
| 928 | |||
| 929 | /* Create initial states for all contexts. */ | ||
| 930 | |||
| 931 | static reg_errcode_t | ||
| 932 | create_initial_state (re_dfa_t *dfa) | ||
| 933 | { | ||
| 934 | Idx first, i; | ||
| 935 | reg_errcode_t err; | ||
| 936 | re_node_set init_nodes; | ||
| 937 | |||
| 938 | /* Initial states have the epsilon closure of the node which is | ||
| 939 | the first node of the regular expression. */ | ||
| 940 | first = dfa->str_tree->first->node_idx; | ||
| 941 | dfa->init_node = first; | ||
| 942 | err = re_node_set_init_copy (&init_nodes, dfa->eclosures + first); | ||
| 943 | if (BE (err != REG_NOERROR, 0)) | ||
| 944 | return err; | ||
| 945 | |||
| 946 | /* The back-references which are in initial states can epsilon transit, | ||
| 947 | since in this case all of the subexpressions can be null. | ||
| 948 | Then we add epsilon closures of the nodes which are the next nodes of | ||
| 949 | the back-references. */ | ||
| 950 | if (dfa->nbackref > 0) | ||
| 951 | for (i = 0; i < init_nodes.nelem; ++i) | ||
| 952 | { | ||
| 953 | Idx node_idx = init_nodes.elems[i]; | ||
| 954 | re_token_type_t type = dfa->nodes[node_idx].type; | ||
| 955 | |||
| 956 | Idx clexp_idx; | ||
| 957 | if (type != OP_BACK_REF) | ||
| 958 | continue; | ||
| 959 | for (clexp_idx = 0; clexp_idx < init_nodes.nelem; ++clexp_idx) | ||
| 960 | { | ||
| 961 | re_token_t *clexp_node; | ||
| 962 | clexp_node = dfa->nodes + init_nodes.elems[clexp_idx]; | ||
| 963 | if (clexp_node->type == OP_CLOSE_SUBEXP | ||
| 964 | && clexp_node->opr.idx == dfa->nodes[node_idx].opr.idx) | ||
| 965 | break; | ||
| 966 | } | ||
| 967 | if (clexp_idx == init_nodes.nelem) | ||
| 968 | continue; | ||
| 969 | |||
| 970 | if (type == OP_BACK_REF) | ||
| 971 | { | ||
| 972 | Idx dest_idx = dfa->edests[node_idx].elems[0]; | ||
| 973 | if (!re_node_set_contains (&init_nodes, dest_idx)) | ||
| 974 | { | ||
| 975 | re_node_set_merge (&init_nodes, dfa->eclosures + dest_idx); | ||
| 976 | i = 0; | ||
| 977 | } | ||
| 978 | } | ||
| 979 | } | ||
| 980 | |||
| 981 | /* It must be the first time to invoke acquire_state. */ | ||
| 982 | dfa->init_state = re_acquire_state_context (&err, dfa, &init_nodes, 0); | ||
| 983 | /* We don't check ERR here, since the initial state must not be NULL. */ | ||
| 984 | if (BE (dfa->init_state == NULL, 0)) | ||
| 985 | return err; | ||
| 986 | if (dfa->init_state->has_constraint) | ||
| 987 | { | ||
| 988 | dfa->init_state_word = re_acquire_state_context (&err, dfa, &init_nodes, | ||
| 989 | CONTEXT_WORD); | ||
| 990 | dfa->init_state_nl = re_acquire_state_context (&err, dfa, &init_nodes, | ||
| 991 | CONTEXT_NEWLINE); | ||
| 992 | dfa->init_state_begbuf = re_acquire_state_context (&err, dfa, | ||
| 993 | &init_nodes, | ||
| 994 | CONTEXT_NEWLINE | ||
| 995 | | CONTEXT_BEGBUF); | ||
| 996 | if (BE (dfa->init_state_word == NULL || dfa->init_state_nl == NULL | ||
| 997 | || dfa->init_state_begbuf == NULL, 0)) | ||
| 998 | return err; | ||
| 999 | } | ||
| 1000 | else | ||
| 1001 | dfa->init_state_word = dfa->init_state_nl | ||
| 1002 | = dfa->init_state_begbuf = dfa->init_state; | ||
| 1003 | |||
| 1004 | re_node_set_free (&init_nodes); | ||
| 1005 | return REG_NOERROR; | ||
| 1006 | } | ||
| 1007 | |||
| 1008 | #ifdef RE_ENABLE_I18N | ||
| 1009 | /* If it is possible to do searching in single byte encoding instead of UTF-8 | ||
| 1010 | to speed things up, set dfa->mb_cur_max to 1, clear is_utf8 and change | ||
| 1011 | DFA nodes where needed. */ | ||
| 1012 | |||
| 1013 | static void | ||
| 1014 | optimize_utf8 (re_dfa_t *dfa) | ||
| 1015 | { | ||
| 1016 | Idx node; | ||
| 1017 | int i; | ||
| 1018 | bool mb_chars = false; | ||
| 1019 | bool has_period = false; | ||
| 1020 | |||
| 1021 | for (node = 0; node < dfa->nodes_len; ++node) | ||
| 1022 | switch (dfa->nodes[node].type) | ||
| 1023 | { | ||
| 1024 | case CHARACTER: | ||
| 1025 | if (dfa->nodes[node].opr.c >= 0x80) | ||
| 1026 | mb_chars = true; | ||
| 1027 | break; | ||
| 1028 | case ANCHOR: | ||
| 1029 | switch (dfa->nodes[node].opr.idx) | ||
| 1030 | { | ||
| 1031 | case LINE_FIRST: | ||
| 1032 | case LINE_LAST: | ||
| 1033 | case BUF_FIRST: | ||
| 1034 | case BUF_LAST: | ||
| 1035 | break; | ||
| 1036 | default: | ||
| 1037 | /* Word anchors etc. cannot be handled. */ | ||
| 1038 | return; | ||
| 1039 | } | ||
| 1040 | break; | ||
| 1041 | case OP_PERIOD: | ||
| 1042 | has_period = true; | ||
| 1043 | break; | ||
| 1044 | case OP_BACK_REF: | ||
| 1045 | case OP_ALT: | ||
| 1046 | case END_OF_RE: | ||
| 1047 | case OP_DUP_ASTERISK: | ||
| 1048 | case OP_OPEN_SUBEXP: | ||
| 1049 | case OP_CLOSE_SUBEXP: | ||
| 1050 | break; | ||
| 1051 | case COMPLEX_BRACKET: | ||
| 1052 | return; | ||
| 1053 | case SIMPLE_BRACKET: | ||
| 1054 | /* Just double check. */ | ||
| 1055 | { | ||
| 1056 | int rshift = | ||
| 1057 | (SBC_MAX / 2 % BITSET_WORD_BITS == 0 | ||
| 1058 | ? 0 | ||
| 1059 | : BITSET_WORD_BITS - SBC_MAX / 2 % BITSET_WORD_BITS); | ||
| 1060 | for (i = SBC_MAX / 2 / BITSET_WORD_BITS; i < BITSET_WORDS; ++i) | ||
| 1061 | { | ||
| 1062 | if (dfa->nodes[node].opr.sbcset[i] >> rshift != 0) | ||
| 1063 | return; | ||
| 1064 | rshift = 0; | ||
| 1065 | } | ||
| 1066 | } | ||
| 1067 | break; | ||
| 1068 | default: | ||
| 1069 | abort (); | ||
| 1070 | } | ||
| 1071 | |||
| 1072 | if (mb_chars || has_period) | ||
| 1073 | for (node = 0; node < dfa->nodes_len; ++node) | ||
| 1074 | { | ||
| 1075 | if (dfa->nodes[node].type == CHARACTER | ||
| 1076 | && dfa->nodes[node].opr.c >= 0x80) | ||
| 1077 | dfa->nodes[node].mb_partial = 0; | ||
| 1078 | else if (dfa->nodes[node].type == OP_PERIOD) | ||
| 1079 | dfa->nodes[node].type = OP_UTF8_PERIOD; | ||
| 1080 | } | ||
| 1081 | |||
| 1082 | /* The search can be in single byte locale. */ | ||
| 1083 | dfa->mb_cur_max = 1; | ||
| 1084 | dfa->is_utf8 = 0; | ||
| 1085 | dfa->has_mb_node = dfa->nbackref > 0 || has_period; | ||
| 1086 | } | ||
| 1087 | #endif | ||
| 1088 | |||
| 1089 | /* Analyze the structure tree, and calculate "first", "next", "edest", | ||
| 1090 | "eclosure", and "inveclosure". */ | ||
| 1091 | |||
| 1092 | static reg_errcode_t | ||
| 1093 | analyze (regex_t *preg) | ||
| 1094 | { | ||
| 1095 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 1096 | reg_errcode_t ret; | ||
| 1097 | |||
| 1098 | /* Allocate arrays. */ | ||
| 1099 | dfa->nexts = re_malloc (Idx, dfa->nodes_alloc); | ||
| 1100 | dfa->org_indices = re_malloc (Idx, dfa->nodes_alloc); | ||
| 1101 | dfa->edests = re_xmalloc (re_node_set, dfa->nodes_alloc); | ||
| 1102 | dfa->eclosures = re_malloc (re_node_set, dfa->nodes_alloc); | ||
| 1103 | if (BE (dfa->nexts == NULL || dfa->org_indices == NULL || dfa->edests == NULL | ||
| 1104 | || dfa->eclosures == NULL, 0)) | ||
| 1105 | return REG_ESPACE; | ||
| 1106 | |||
| 1107 | dfa->subexp_map = re_xmalloc (Idx, preg->re_nsub); | ||
| 1108 | if (dfa->subexp_map != NULL) | ||
| 1109 | { | ||
| 1110 | Idx i; | ||
| 1111 | for (i = 0; i < preg->re_nsub; i++) | ||
| 1112 | dfa->subexp_map[i] = i; | ||
| 1113 | preorder (dfa->str_tree, optimize_subexps, dfa); | ||
| 1114 | for (i = 0; i < preg->re_nsub; i++) | ||
| 1115 | if (dfa->subexp_map[i] != i) | ||
| 1116 | break; | ||
| 1117 | if (i == preg->re_nsub) | ||
| 1118 | { | ||
| 1119 | free (dfa->subexp_map); | ||
| 1120 | dfa->subexp_map = NULL; | ||
| 1121 | } | ||
| 1122 | } | ||
| 1123 | |||
| 1124 | ret = postorder (dfa->str_tree, lower_subexps, preg); | ||
| 1125 | if (BE (ret != REG_NOERROR, 0)) | ||
| 1126 | return ret; | ||
| 1127 | ret = postorder (dfa->str_tree, calc_first, dfa); | ||
| 1128 | if (BE (ret != REG_NOERROR, 0)) | ||
| 1129 | return ret; | ||
| 1130 | preorder (dfa->str_tree, calc_next, dfa); | ||
| 1131 | ret = preorder (dfa->str_tree, link_nfa_nodes, dfa); | ||
| 1132 | if (BE (ret != REG_NOERROR, 0)) | ||
| 1133 | return ret; | ||
| 1134 | ret = calc_eclosure (dfa); | ||
| 1135 | if (BE (ret != REG_NOERROR, 0)) | ||
| 1136 | return ret; | ||
| 1137 | |||
| 1138 | /* We only need this during the prune_impossible_nodes pass in regexec.c; | ||
| 1139 | skip it if p_i_n will not run, as calc_inveclosure can be quadratic. */ | ||
| 1140 | if ((!preg->re_no_sub && preg->re_nsub > 0 && dfa->has_plural_match) | ||
| 1141 | || dfa->nbackref) | ||
| 1142 | { | ||
| 1143 | dfa->inveclosures = re_xmalloc (re_node_set, dfa->nodes_len); | ||
| 1144 | if (BE (dfa->inveclosures == NULL, 0)) | ||
| 1145 | return REG_ESPACE; | ||
| 1146 | ret = calc_inveclosure (dfa); | ||
| 1147 | } | ||
| 1148 | |||
| 1149 | return ret; | ||
| 1150 | } | ||
| 1151 | |||
| 1152 | /* Our parse trees are very unbalanced, so we cannot use a stack to | ||
| 1153 | implement parse tree visits. Instead, we use parent pointers and | ||
| 1154 | some hairy code in these two functions. */ | ||
| 1155 | static reg_errcode_t | ||
| 1156 | postorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | ||
| 1157 | void *extra) | ||
| 1158 | { | ||
| 1159 | bin_tree_t *node, *prev; | ||
| 1160 | |||
| 1161 | for (node = root; ; ) | ||
| 1162 | { | ||
| 1163 | /* Descend down the tree, preferably to the left (or to the right | ||
| 1164 | if that's the only child). */ | ||
| 1165 | while (node->left || node->right) | ||
| 1166 | if (node->left) | ||
| 1167 | node = node->left; | ||
| 1168 | else | ||
| 1169 | node = node->right; | ||
| 1170 | |||
| 1171 | do | ||
| 1172 | { | ||
| 1173 | reg_errcode_t err = fn (extra, node); | ||
| 1174 | if (BE (err != REG_NOERROR, 0)) | ||
| 1175 | return err; | ||
| 1176 | if (node->parent == NULL) | ||
| 1177 | return REG_NOERROR; | ||
| 1178 | prev = node; | ||
| 1179 | node = node->parent; | ||
| 1180 | } | ||
| 1181 | /* Go up while we have a node that is reached from the right. */ | ||
| 1182 | while (node->right == prev || node->right == NULL); | ||
| 1183 | node = node->right; | ||
| 1184 | } | ||
| 1185 | } | ||
| 1186 | |||
| 1187 | static reg_errcode_t | ||
| 1188 | preorder (bin_tree_t *root, reg_errcode_t (fn (void *, bin_tree_t *)), | ||
| 1189 | void *extra) | ||
| 1190 | { | ||
| 1191 | bin_tree_t *node; | ||
| 1192 | |||
| 1193 | for (node = root; ; ) | ||
| 1194 | { | ||
| 1195 | reg_errcode_t err = fn (extra, node); | ||
| 1196 | if (BE (err != REG_NOERROR, 0)) | ||
| 1197 | return err; | ||
| 1198 | |||
| 1199 | /* Go to the left node, or up and to the right. */ | ||
| 1200 | if (node->left) | ||
| 1201 | node = node->left; | ||
| 1202 | else | ||
| 1203 | { | ||
| 1204 | bin_tree_t *prev = NULL; | ||
| 1205 | while (node->right == prev || node->right == NULL) | ||
| 1206 | { | ||
| 1207 | prev = node; | ||
| 1208 | node = node->parent; | ||
| 1209 | if (!node) | ||
| 1210 | return REG_NOERROR; | ||
| 1211 | } | ||
| 1212 | node = node->right; | ||
| 1213 | } | ||
| 1214 | } | ||
| 1215 | } | ||
| 1216 | |||
| 1217 | /* Optimization pass: if a SUBEXP is entirely contained, strip it and tell | ||
| 1218 | re_search_internal to map the inner one's opr.idx to this one's. Adjust | ||
| 1219 | backreferences as well. Requires a preorder visit. */ | ||
| 1220 | static reg_errcode_t | ||
| 1221 | optimize_subexps (void *extra, bin_tree_t *node) | ||
| 1222 | { | ||
| 1223 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
| 1224 | |||
| 1225 | if (node->token.type == OP_BACK_REF && dfa->subexp_map) | ||
| 1226 | { | ||
| 1227 | int idx = node->token.opr.idx; | ||
| 1228 | node->token.opr.idx = dfa->subexp_map[idx]; | ||
| 1229 | dfa->used_bkref_map |= 1 << node->token.opr.idx; | ||
| 1230 | } | ||
| 1231 | |||
| 1232 | else if (node->token.type == SUBEXP | ||
| 1233 | && node->left && node->left->token.type == SUBEXP) | ||
| 1234 | { | ||
| 1235 | Idx other_idx = node->left->token.opr.idx; | ||
| 1236 | |||
| 1237 | node->left = node->left->left; | ||
| 1238 | if (node->left) | ||
| 1239 | node->left->parent = node; | ||
| 1240 | |||
| 1241 | dfa->subexp_map[other_idx] = dfa->subexp_map[node->token.opr.idx]; | ||
| 1242 | if (other_idx < BITSET_WORD_BITS) | ||
| 1243 | dfa->used_bkref_map &= ~ ((bitset_word) 1 << other_idx); | ||
| 1244 | } | ||
| 1245 | |||
| 1246 | return REG_NOERROR; | ||
| 1247 | } | ||
| 1248 | |||
| 1249 | /* Lowering pass: Turn each SUBEXP node into the appropriate concatenation | ||
| 1250 | of OP_OPEN_SUBEXP, the body of the SUBEXP (if any) and OP_CLOSE_SUBEXP. */ | ||
| 1251 | static reg_errcode_t | ||
| 1252 | lower_subexps (void *extra, bin_tree_t *node) | ||
| 1253 | { | ||
| 1254 | regex_t *preg = (regex_t *) extra; | ||
| 1255 | reg_errcode_t err = REG_NOERROR; | ||
| 1256 | |||
| 1257 | if (node->left && node->left->token.type == SUBEXP) | ||
| 1258 | { | ||
| 1259 | node->left = lower_subexp (&err, preg, node->left); | ||
| 1260 | if (node->left) | ||
| 1261 | node->left->parent = node; | ||
| 1262 | } | ||
| 1263 | if (node->right && node->right->token.type == SUBEXP) | ||
| 1264 | { | ||
| 1265 | node->right = lower_subexp (&err, preg, node->right); | ||
| 1266 | if (node->right) | ||
| 1267 | node->right->parent = node; | ||
| 1268 | } | ||
| 1269 | |||
| 1270 | return err; | ||
| 1271 | } | ||
| 1272 | |||
| 1273 | static bin_tree_t * | ||
| 1274 | lower_subexp (reg_errcode_t *err, regex_t *preg, bin_tree_t *node) | ||
| 1275 | { | ||
| 1276 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 1277 | bin_tree_t *body = node->left; | ||
| 1278 | bin_tree_t *op, *cls, *tree1, *tree; | ||
| 1279 | |||
| 1280 | if (preg->re_no_sub | ||
| 1281 | /* We do not optimize empty subexpressions, because otherwise we may | ||
| 1282 | have bad CONCAT nodes with NULL children. This is obviously not | ||
| 1283 | very common, so we do not lose much. An example that triggers | ||
| 1284 | this case is the sed "script" /\(\)/x. */ | ||
| 1285 | && node->left != NULL | ||
| 1286 | && ! (node->token.opr.idx < BITSET_WORD_BITS | ||
| 1287 | && dfa->used_bkref_map & ((bitset_word) 1 << node->token.opr.idx))) | ||
| 1288 | return node->left; | ||
| 1289 | |||
| 1290 | /* Convert the SUBEXP node to the concatenation of an | ||
| 1291 | OP_OPEN_SUBEXP, the contents, and an OP_CLOSE_SUBEXP. */ | ||
| 1292 | op = create_tree (dfa, NULL, NULL, OP_OPEN_SUBEXP); | ||
| 1293 | cls = create_tree (dfa, NULL, NULL, OP_CLOSE_SUBEXP); | ||
| 1294 | tree1 = body ? create_tree (dfa, body, cls, CONCAT) : cls; | ||
| 1295 | tree = create_tree (dfa, op, tree1, CONCAT); | ||
| 1296 | if (BE (tree == NULL || tree1 == NULL || op == NULL || cls == NULL, 0)) | ||
| 1297 | { | ||
| 1298 | *err = REG_ESPACE; | ||
| 1299 | return NULL; | ||
| 1300 | } | ||
| 1301 | |||
| 1302 | op->token.opr.idx = cls->token.opr.idx = node->token.opr.idx; | ||
| 1303 | op->token.opt_subexp = cls->token.opt_subexp = node->token.opt_subexp; | ||
| 1304 | return tree; | ||
| 1305 | } | ||
| 1306 | |||
| 1307 | /* Pass 1 in building the NFA: compute FIRST and create unlinked automaton | ||
| 1308 | nodes. Requires a postorder visit. */ | ||
| 1309 | static reg_errcode_t | ||
| 1310 | calc_first (void *extra, bin_tree_t *node) | ||
| 1311 | { | ||
| 1312 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
| 1313 | if (node->token.type == CONCAT) | ||
| 1314 | { | ||
| 1315 | node->first = node->left->first; | ||
| 1316 | node->node_idx = node->left->node_idx; | ||
| 1317 | } | ||
| 1318 | else | ||
| 1319 | { | ||
| 1320 | node->first = node; | ||
| 1321 | node->node_idx = re_dfa_add_node (dfa, node->token); | ||
| 1322 | if (BE (node->node_idx == REG_MISSING, 0)) | ||
| 1323 | return REG_ESPACE; | ||
| 1324 | } | ||
| 1325 | return REG_NOERROR; | ||
| 1326 | } | ||
| 1327 | |||
| 1328 | /* Pass 2: compute NEXT on the tree. Preorder visit. */ | ||
| 1329 | static reg_errcode_t | ||
| 1330 | calc_next (void *extra, bin_tree_t *node) | ||
| 1331 | { | ||
| 1332 | switch (node->token.type) | ||
| 1333 | { | ||
| 1334 | case OP_DUP_ASTERISK: | ||
| 1335 | node->left->next = node; | ||
| 1336 | break; | ||
| 1337 | case CONCAT: | ||
| 1338 | node->left->next = node->right->first; | ||
| 1339 | node->right->next = node->next; | ||
| 1340 | break; | ||
| 1341 | default: | ||
| 1342 | if (node->left) | ||
| 1343 | node->left->next = node->next; | ||
| 1344 | if (node->right) | ||
| 1345 | node->right->next = node->next; | ||
| 1346 | break; | ||
| 1347 | } | ||
| 1348 | return REG_NOERROR; | ||
| 1349 | } | ||
| 1350 | |||
| 1351 | /* Pass 3: link all DFA nodes to their NEXT node (any order will do). */ | ||
| 1352 | static reg_errcode_t | ||
| 1353 | link_nfa_nodes (void *extra, bin_tree_t *node) | ||
| 1354 | { | ||
| 1355 | re_dfa_t *dfa = (re_dfa_t *) extra; | ||
| 1356 | Idx idx = node->node_idx; | ||
| 1357 | reg_errcode_t err = REG_NOERROR; | ||
| 1358 | |||
| 1359 | switch (node->token.type) | ||
| 1360 | { | ||
| 1361 | case CONCAT: | ||
| 1362 | break; | ||
| 1363 | |||
| 1364 | case END_OF_RE: | ||
| 1365 | assert (node->next == NULL); | ||
| 1366 | break; | ||
| 1367 | |||
| 1368 | case OP_DUP_ASTERISK: | ||
| 1369 | case OP_ALT: | ||
| 1370 | { | ||
| 1371 | Idx left, right; | ||
| 1372 | dfa->has_plural_match = 1; | ||
| 1373 | if (node->left != NULL) | ||
| 1374 | left = node->left->first->node_idx; | ||
| 1375 | else | ||
| 1376 | left = node->next->node_idx; | ||
| 1377 | if (node->right != NULL) | ||
| 1378 | right = node->right->first->node_idx; | ||
| 1379 | else | ||
| 1380 | right = node->next->node_idx; | ||
| 1381 | assert (REG_VALID_INDEX (left)); | ||
| 1382 | assert (REG_VALID_INDEX (right)); | ||
| 1383 | err = re_node_set_init_2 (dfa->edests + idx, left, right); | ||
| 1384 | } | ||
| 1385 | break; | ||
| 1386 | |||
| 1387 | case ANCHOR: | ||
| 1388 | case OP_OPEN_SUBEXP: | ||
| 1389 | case OP_CLOSE_SUBEXP: | ||
| 1390 | err = re_node_set_init_1 (dfa->edests + idx, node->next->node_idx); | ||
| 1391 | break; | ||
| 1392 | |||
| 1393 | case OP_BACK_REF: | ||
| 1394 | dfa->nexts[idx] = node->next->node_idx; | ||
| 1395 | if (node->token.type == OP_BACK_REF) | ||
| 1396 | re_node_set_init_1 (dfa->edests + idx, dfa->nexts[idx]); | ||
| 1397 | break; | ||
| 1398 | |||
| 1399 | default: | ||
| 1400 | assert (!IS_EPSILON_NODE (node->token.type)); | ||
| 1401 | dfa->nexts[idx] = node->next->node_idx; | ||
| 1402 | break; | ||
| 1403 | } | ||
| 1404 | |||
| 1405 | return err; | ||
| 1406 | } | ||
| 1407 | |||
| 1408 | /* Duplicate the epsilon closure of the node ROOT_NODE. | ||
| 1409 | Note that duplicated nodes have constraint INIT_CONSTRAINT in addition | ||
| 1410 | to their own constraint. */ | ||
| 1411 | |||
| 1412 | static reg_errcode_t | ||
| 1413 | duplicate_node_closure (re_dfa_t *dfa, Idx top_org_node, | ||
| 1414 | Idx top_clone_node, Idx root_node, | ||
| 1415 | unsigned int init_constraint) | ||
| 1416 | { | ||
| 1417 | Idx org_node, clone_node; | ||
| 1418 | bool ok; | ||
| 1419 | unsigned int constraint = init_constraint; | ||
| 1420 | for (org_node = top_org_node, clone_node = top_clone_node;;) | ||
| 1421 | { | ||
| 1422 | Idx org_dest, clone_dest; | ||
| 1423 | if (dfa->nodes[org_node].type == OP_BACK_REF) | ||
| 1424 | { | ||
| 1425 | /* If the back reference epsilon-transit, its destination must | ||
| 1426 | also have the constraint. Then duplicate the epsilon closure | ||
| 1427 | of the destination of the back reference, and store it in | ||
| 1428 | edests of the back reference. */ | ||
| 1429 | org_dest = dfa->nexts[org_node]; | ||
| 1430 | re_node_set_empty (dfa->edests + clone_node); | ||
| 1431 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
| 1432 | if (BE (clone_dest == REG_MISSING, 0)) | ||
| 1433 | return REG_ESPACE; | ||
| 1434 | dfa->nexts[clone_node] = dfa->nexts[org_node]; | ||
| 1435 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
| 1436 | if (BE (! ok, 0)) | ||
| 1437 | return REG_ESPACE; | ||
| 1438 | } | ||
| 1439 | else if (dfa->edests[org_node].nelem == 0) | ||
| 1440 | { | ||
| 1441 | /* In case of the node can't epsilon-transit, don't duplicate the | ||
| 1442 | destination and store the original destination as the | ||
| 1443 | destination of the node. */ | ||
| 1444 | dfa->nexts[clone_node] = dfa->nexts[org_node]; | ||
| 1445 | break; | ||
| 1446 | } | ||
| 1447 | else if (dfa->edests[org_node].nelem == 1) | ||
| 1448 | { | ||
| 1449 | /* In case of the node can epsilon-transit, and it has only one | ||
| 1450 | destination. */ | ||
| 1451 | org_dest = dfa->edests[org_node].elems[0]; | ||
| 1452 | re_node_set_empty (dfa->edests + clone_node); | ||
| 1453 | if (dfa->nodes[org_node].type == ANCHOR) | ||
| 1454 | { | ||
| 1455 | /* In case of the node has another constraint, append it. */ | ||
| 1456 | if (org_node == root_node && clone_node != org_node) | ||
| 1457 | { | ||
| 1458 | /* ...but if the node is root_node itself, it means the | ||
| 1459 | epsilon closure have a loop, then tie it to the | ||
| 1460 | destination of the root_node. */ | ||
| 1461 | ok = re_node_set_insert (dfa->edests + clone_node, | ||
| 1462 | org_dest); | ||
| 1463 | if (BE (! ok, 0)) | ||
| 1464 | return REG_ESPACE; | ||
| 1465 | break; | ||
| 1466 | } | ||
| 1467 | constraint |= dfa->nodes[org_node].opr.ctx_type; | ||
| 1468 | } | ||
| 1469 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
| 1470 | if (BE (clone_dest == REG_MISSING, 0)) | ||
| 1471 | return REG_ESPACE; | ||
| 1472 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
| 1473 | if (BE (! ok, 0)) | ||
| 1474 | return REG_ESPACE; | ||
| 1475 | } | ||
| 1476 | else /* dfa->edests[org_node].nelem == 2 */ | ||
| 1477 | { | ||
| 1478 | /* In case of the node can epsilon-transit, and it has two | ||
| 1479 | destinations. In the bin_tree_t and DFA, that's '|' and '*'. */ | ||
| 1480 | org_dest = dfa->edests[org_node].elems[0]; | ||
| 1481 | re_node_set_empty (dfa->edests + clone_node); | ||
| 1482 | /* Search for a duplicated node which satisfies the constraint. */ | ||
| 1483 | clone_dest = search_duplicated_node (dfa, org_dest, constraint); | ||
| 1484 | if (clone_dest == REG_MISSING) | ||
| 1485 | { | ||
| 1486 | /* There are no such a duplicated node, create a new one. */ | ||
| 1487 | reg_errcode_t err; | ||
| 1488 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
| 1489 | if (BE (clone_dest == REG_MISSING, 0)) | ||
| 1490 | return REG_ESPACE; | ||
| 1491 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
| 1492 | if (BE (! ok, 0)) | ||
| 1493 | return REG_ESPACE; | ||
| 1494 | err = duplicate_node_closure (dfa, org_dest, clone_dest, | ||
| 1495 | root_node, constraint); | ||
| 1496 | if (BE (err != REG_NOERROR, 0)) | ||
| 1497 | return err; | ||
| 1498 | } | ||
| 1499 | else | ||
| 1500 | { | ||
| 1501 | /* There are a duplicated node which satisfy the constraint, | ||
| 1502 | use it to avoid infinite loop. */ | ||
| 1503 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
| 1504 | if (BE (! ok, 0)) | ||
| 1505 | return REG_ESPACE; | ||
| 1506 | } | ||
| 1507 | |||
| 1508 | org_dest = dfa->edests[org_node].elems[1]; | ||
| 1509 | clone_dest = duplicate_node (dfa, org_dest, constraint); | ||
| 1510 | if (BE (clone_dest == REG_MISSING, 0)) | ||
| 1511 | return REG_ESPACE; | ||
| 1512 | ok = re_node_set_insert (dfa->edests + clone_node, clone_dest); | ||
| 1513 | if (BE (! ok, 0)) | ||
| 1514 | return REG_ESPACE; | ||
| 1515 | } | ||
| 1516 | org_node = org_dest; | ||
| 1517 | clone_node = clone_dest; | ||
| 1518 | } | ||
| 1519 | return REG_NOERROR; | ||
| 1520 | } | ||
| 1521 | |||
| 1522 | /* Search for a node which is duplicated from the node ORG_NODE, and | ||
| 1523 | satisfies the constraint CONSTRAINT. */ | ||
| 1524 | |||
| 1525 | static Idx | ||
| 1526 | search_duplicated_node (const re_dfa_t *dfa, Idx org_node, | ||
| 1527 | unsigned int constraint) | ||
| 1528 | { | ||
| 1529 | Idx idx; | ||
| 1530 | for (idx = dfa->nodes_len - 1; dfa->nodes[idx].duplicated && idx > 0; --idx) | ||
| 1531 | { | ||
| 1532 | if (org_node == dfa->org_indices[idx] | ||
| 1533 | && constraint == dfa->nodes[idx].constraint) | ||
| 1534 | return idx; /* Found. */ | ||
| 1535 | } | ||
| 1536 | return REG_MISSING; /* Not found. */ | ||
| 1537 | } | ||
| 1538 | |||
| 1539 | /* Duplicate the node whose index is ORG_IDX and set the constraint CONSTRAINT. | ||
| 1540 | Return the index of the new node, or REG_MISSING if insufficient storage is | ||
| 1541 | available. */ | ||
| 1542 | |||
| 1543 | static Idx | ||
| 1544 | duplicate_node (re_dfa_t *dfa, Idx org_idx, unsigned int constraint) | ||
| 1545 | { | ||
| 1546 | Idx dup_idx = re_dfa_add_node (dfa, dfa->nodes[org_idx]); | ||
| 1547 | if (BE (dup_idx != REG_MISSING, 1)) | ||
| 1548 | { | ||
| 1549 | dfa->nodes[dup_idx].constraint = constraint; | ||
| 1550 | if (dfa->nodes[org_idx].type == ANCHOR) | ||
| 1551 | dfa->nodes[dup_idx].constraint |= dfa->nodes[org_idx].opr.ctx_type; | ||
| 1552 | dfa->nodes[dup_idx].duplicated = 1; | ||
| 1553 | |||
| 1554 | /* Store the index of the original node. */ | ||
| 1555 | dfa->org_indices[dup_idx] = org_idx; | ||
| 1556 | } | ||
| 1557 | return dup_idx; | ||
| 1558 | } | ||
| 1559 | |||
| 1560 | static reg_errcode_t | ||
| 1561 | calc_inveclosure (re_dfa_t *dfa) | ||
| 1562 | { | ||
| 1563 | Idx src, idx; | ||
| 1564 | bool ok; | ||
| 1565 | for (idx = 0; idx < dfa->nodes_len; ++idx) | ||
| 1566 | re_node_set_init_empty (dfa->inveclosures + idx); | ||
| 1567 | |||
| 1568 | for (src = 0; src < dfa->nodes_len; ++src) | ||
| 1569 | { | ||
| 1570 | Idx *elems = dfa->eclosures[src].elems; | ||
| 1571 | for (idx = 0; idx < dfa->eclosures[src].nelem; ++idx) | ||
| 1572 | { | ||
| 1573 | ok = re_node_set_insert_last (dfa->inveclosures + elems[idx], src); | ||
| 1574 | if (BE (! ok, 0)) | ||
| 1575 | return REG_ESPACE; | ||
| 1576 | } | ||
| 1577 | } | ||
| 1578 | |||
| 1579 | return REG_NOERROR; | ||
| 1580 | } | ||
| 1581 | |||
| 1582 | /* Calculate "eclosure" for all the node in DFA. */ | ||
| 1583 | |||
| 1584 | static reg_errcode_t | ||
| 1585 | calc_eclosure (re_dfa_t *dfa) | ||
| 1586 | { | ||
| 1587 | Idx node_idx; | ||
| 1588 | bool incomplete; | ||
| 1589 | #ifdef DEBUG | ||
| 1590 | assert (dfa->nodes_len > 0); | ||
| 1591 | #endif | ||
| 1592 | incomplete = false; | ||
| 1593 | /* For each nodes, calculate epsilon closure. */ | ||
| 1594 | for (node_idx = 0; ; ++node_idx) | ||
| 1595 | { | ||
| 1596 | reg_errcode_t err; | ||
| 1597 | re_node_set eclosure_elem; | ||
| 1598 | if (node_idx == dfa->nodes_len) | ||
| 1599 | { | ||
| 1600 | if (!incomplete) | ||
| 1601 | break; | ||
| 1602 | incomplete = false; | ||
| 1603 | node_idx = 0; | ||
| 1604 | } | ||
| 1605 | |||
| 1606 | #ifdef DEBUG | ||
| 1607 | assert (dfa->eclosures[node_idx].nelem != REG_MISSING); | ||
| 1608 | #endif | ||
| 1609 | |||
| 1610 | /* If we have already calculated, skip it. */ | ||
| 1611 | if (dfa->eclosures[node_idx].nelem != 0) | ||
| 1612 | continue; | ||
| 1613 | /* Calculate epsilon closure of `node_idx'. */ | ||
| 1614 | err = calc_eclosure_iter (&eclosure_elem, dfa, node_idx, true); | ||
| 1615 | if (BE (err != REG_NOERROR, 0)) | ||
| 1616 | return err; | ||
| 1617 | |||
| 1618 | if (dfa->eclosures[node_idx].nelem == 0) | ||
| 1619 | { | ||
| 1620 | incomplete = true; | ||
| 1621 | re_node_set_free (&eclosure_elem); | ||
| 1622 | } | ||
| 1623 | } | ||
| 1624 | return REG_NOERROR; | ||
| 1625 | } | ||
| 1626 | |||
| 1627 | /* Calculate epsilon closure of NODE. */ | ||
| 1628 | |||
| 1629 | static reg_errcode_t | ||
| 1630 | calc_eclosure_iter (re_node_set *new_set, re_dfa_t *dfa, Idx node, bool root) | ||
| 1631 | { | ||
| 1632 | reg_errcode_t err; | ||
| 1633 | unsigned int constraint; | ||
| 1634 | Idx i; | ||
| 1635 | bool incomplete; | ||
| 1636 | bool ok; | ||
| 1637 | re_node_set eclosure; | ||
| 1638 | incomplete = false; | ||
| 1639 | err = re_node_set_alloc (&eclosure, dfa->edests[node].nelem + 1); | ||
| 1640 | if (BE (err != REG_NOERROR, 0)) | ||
| 1641 | return err; | ||
| 1642 | |||
| 1643 | /* This indicates that we are calculating this node now. | ||
| 1644 | We reference this value to avoid infinite loop. */ | ||
| 1645 | dfa->eclosures[node].nelem = REG_MISSING; | ||
| 1646 | |||
| 1647 | constraint = ((dfa->nodes[node].type == ANCHOR) | ||
| 1648 | ? dfa->nodes[node].opr.ctx_type : 0); | ||
| 1649 | /* If the current node has constraints, duplicate all nodes. | ||
| 1650 | Since they must inherit the constraints. */ | ||
| 1651 | if (constraint | ||
| 1652 | && dfa->edests[node].nelem | ||
| 1653 | && !dfa->nodes[dfa->edests[node].elems[0]].duplicated) | ||
| 1654 | { | ||
| 1655 | Idx org_node, cur_node; | ||
| 1656 | org_node = cur_node = node; | ||
| 1657 | err = duplicate_node_closure (dfa, node, node, node, constraint); | ||
| 1658 | if (BE (err != REG_NOERROR, 0)) | ||
| 1659 | return err; | ||
| 1660 | } | ||
| 1661 | |||
| 1662 | /* Expand each epsilon destination nodes. */ | ||
| 1663 | if (IS_EPSILON_NODE(dfa->nodes[node].type)) | ||
| 1664 | for (i = 0; i < dfa->edests[node].nelem; ++i) | ||
| 1665 | { | ||
| 1666 | re_node_set eclosure_elem; | ||
| 1667 | Idx edest = dfa->edests[node].elems[i]; | ||
| 1668 | /* If calculating the epsilon closure of `edest' is in progress, | ||
| 1669 | return intermediate result. */ | ||
| 1670 | if (dfa->eclosures[edest].nelem == REG_MISSING) | ||
| 1671 | { | ||
| 1672 | incomplete = true; | ||
| 1673 | continue; | ||
| 1674 | } | ||
| 1675 | /* If we haven't calculated the epsilon closure of `edest' yet, | ||
| 1676 | calculate now. Otherwise use calculated epsilon closure. */ | ||
| 1677 | if (dfa->eclosures[edest].nelem == 0) | ||
| 1678 | { | ||
| 1679 | err = calc_eclosure_iter (&eclosure_elem, dfa, edest, false); | ||
| 1680 | if (BE (err != REG_NOERROR, 0)) | ||
| 1681 | return err; | ||
| 1682 | } | ||
| 1683 | else | ||
| 1684 | eclosure_elem = dfa->eclosures[edest]; | ||
| 1685 | /* Merge the epsilon closure of `edest'. */ | ||
| 1686 | re_node_set_merge (&eclosure, &eclosure_elem); | ||
| 1687 | /* If the epsilon closure of `edest' is incomplete, | ||
| 1688 | the epsilon closure of this node is also incomplete. */ | ||
| 1689 | if (dfa->eclosures[edest].nelem == 0) | ||
| 1690 | { | ||
| 1691 | incomplete = true; | ||
| 1692 | re_node_set_free (&eclosure_elem); | ||
| 1693 | } | ||
| 1694 | } | ||
| 1695 | |||
| 1696 | /* Epsilon closures include itself. */ | ||
| 1697 | ok = re_node_set_insert (&eclosure, node); | ||
| 1698 | if (BE (! ok, 0)) | ||
| 1699 | return REG_ESPACE; | ||
| 1700 | if (incomplete && !root) | ||
| 1701 | dfa->eclosures[node].nelem = 0; | ||
| 1702 | else | ||
| 1703 | dfa->eclosures[node] = eclosure; | ||
| 1704 | *new_set = eclosure; | ||
| 1705 | return REG_NOERROR; | ||
| 1706 | } | ||
| 1707 | |||
| 1708 | /* Functions for token which are used in the parser. */ | ||
| 1709 | |||
| 1710 | /* Fetch a token from INPUT. | ||
| 1711 | We must not use this function inside bracket expressions. */ | ||
| 1712 | |||
| 1713 | static void | ||
| 1714 | fetch_token (re_token_t *result, re_string_t *input, reg_syntax_t syntax) | ||
| 1715 | { | ||
| 1716 | re_string_skip_bytes (input, peek_token (result, input, syntax)); | ||
| 1717 | } | ||
| 1718 | |||
| 1719 | /* Peek a token from INPUT, and return the length of the token. | ||
| 1720 | We must not use this function inside bracket expressions. */ | ||
| 1721 | |||
| 1722 | static int | ||
| 1723 | peek_token (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | ||
| 1724 | { | ||
| 1725 | unsigned char c; | ||
| 1726 | |||
| 1727 | if (re_string_eoi (input)) | ||
| 1728 | { | ||
| 1729 | token->type = END_OF_RE; | ||
| 1730 | return 0; | ||
| 1731 | } | ||
| 1732 | |||
| 1733 | c = re_string_peek_byte (input, 0); | ||
| 1734 | token->opr.c = c; | ||
| 1735 | |||
| 1736 | token->word_char = 0; | ||
| 1737 | #ifdef RE_ENABLE_I18N | ||
| 1738 | token->mb_partial = 0; | ||
| 1739 | if (input->mb_cur_max > 1 && | ||
| 1740 | !re_string_first_byte (input, re_string_cur_idx (input))) | ||
| 1741 | { | ||
| 1742 | token->type = CHARACTER; | ||
| 1743 | token->mb_partial = 1; | ||
| 1744 | return 1; | ||
| 1745 | } | ||
| 1746 | #endif | ||
| 1747 | if (c == '\\') | ||
| 1748 | { | ||
| 1749 | unsigned char c2; | ||
| 1750 | if (re_string_cur_idx (input) + 1 >= re_string_length (input)) | ||
| 1751 | { | ||
| 1752 | token->type = BACK_SLASH; | ||
| 1753 | return 1; | ||
| 1754 | } | ||
| 1755 | |||
| 1756 | c2 = re_string_peek_byte_case (input, 1); | ||
| 1757 | token->opr.c = c2; | ||
| 1758 | token->type = CHARACTER; | ||
| 1759 | #ifdef RE_ENABLE_I18N | ||
| 1760 | if (input->mb_cur_max > 1) | ||
| 1761 | { | ||
| 1762 | wint_t wc = re_string_wchar_at (input, | ||
| 1763 | re_string_cur_idx (input) + 1); | ||
| 1764 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | ||
| 1765 | } | ||
| 1766 | else | ||
| 1767 | #endif | ||
| 1768 | token->word_char = IS_WORD_CHAR (c2) != 0; | ||
| 1769 | |||
| 1770 | switch (c2) | ||
| 1771 | { | ||
| 1772 | case '|': | ||
| 1773 | if (!(syntax & REG_LIMITED_OPS) && !(syntax & REG_NO_BK_VBAR)) | ||
| 1774 | token->type = OP_ALT; | ||
| 1775 | break; | ||
| 1776 | case '1': case '2': case '3': case '4': case '5': | ||
| 1777 | case '6': case '7': case '8': case '9': | ||
| 1778 | if (!(syntax & REG_NO_BK_REFS)) | ||
| 1779 | { | ||
| 1780 | token->type = OP_BACK_REF; | ||
| 1781 | token->opr.idx = c2 - '1'; | ||
| 1782 | } | ||
| 1783 | break; | ||
| 1784 | case '<': | ||
| 1785 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1786 | { | ||
| 1787 | token->type = ANCHOR; | ||
| 1788 | token->opr.ctx_type = WORD_FIRST; | ||
| 1789 | } | ||
| 1790 | break; | ||
| 1791 | case '>': | ||
| 1792 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1793 | { | ||
| 1794 | token->type = ANCHOR; | ||
| 1795 | token->opr.ctx_type = WORD_LAST; | ||
| 1796 | } | ||
| 1797 | break; | ||
| 1798 | case 'b': | ||
| 1799 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1800 | { | ||
| 1801 | token->type = ANCHOR; | ||
| 1802 | token->opr.ctx_type = WORD_DELIM; | ||
| 1803 | } | ||
| 1804 | break; | ||
| 1805 | case 'B': | ||
| 1806 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1807 | { | ||
| 1808 | token->type = ANCHOR; | ||
| 1809 | token->opr.ctx_type = NOT_WORD_DELIM; | ||
| 1810 | } | ||
| 1811 | break; | ||
| 1812 | case 'w': | ||
| 1813 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1814 | token->type = OP_WORD; | ||
| 1815 | break; | ||
| 1816 | case 'W': | ||
| 1817 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1818 | token->type = OP_NOTWORD; | ||
| 1819 | break; | ||
| 1820 | case 's': | ||
| 1821 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1822 | token->type = OP_SPACE; | ||
| 1823 | break; | ||
| 1824 | case 'S': | ||
| 1825 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1826 | token->type = OP_NOTSPACE; | ||
| 1827 | break; | ||
| 1828 | case '`': | ||
| 1829 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1830 | { | ||
| 1831 | token->type = ANCHOR; | ||
| 1832 | token->opr.ctx_type = BUF_FIRST; | ||
| 1833 | } | ||
| 1834 | break; | ||
| 1835 | case '\'': | ||
| 1836 | if (!(syntax & REG_NO_GNU_OPS)) | ||
| 1837 | { | ||
| 1838 | token->type = ANCHOR; | ||
| 1839 | token->opr.ctx_type = BUF_LAST; | ||
| 1840 | } | ||
| 1841 | break; | ||
| 1842 | case '(': | ||
| 1843 | if (!(syntax & REG_NO_BK_PARENS)) | ||
| 1844 | token->type = OP_OPEN_SUBEXP; | ||
| 1845 | break; | ||
| 1846 | case ')': | ||
| 1847 | if (!(syntax & REG_NO_BK_PARENS)) | ||
| 1848 | token->type = OP_CLOSE_SUBEXP; | ||
| 1849 | break; | ||
| 1850 | case '+': | ||
| 1851 | if (!(syntax & REG_LIMITED_OPS) && (syntax & REG_BK_PLUS_QM)) | ||
| 1852 | token->type = OP_DUP_PLUS; | ||
| 1853 | break; | ||
| 1854 | case '?': | ||
| 1855 | if (!(syntax & REG_LIMITED_OPS) && (syntax & REG_BK_PLUS_QM)) | ||
| 1856 | token->type = OP_DUP_QUESTION; | ||
| 1857 | break; | ||
| 1858 | case '{': | ||
| 1859 | if ((syntax & REG_INTERVALS) && (!(syntax & REG_NO_BK_BRACES))) | ||
| 1860 | token->type = OP_OPEN_DUP_NUM; | ||
| 1861 | break; | ||
| 1862 | case '}': | ||
| 1863 | if ((syntax & REG_INTERVALS) && (!(syntax & REG_NO_BK_BRACES))) | ||
| 1864 | token->type = OP_CLOSE_DUP_NUM; | ||
| 1865 | break; | ||
| 1866 | default: | ||
| 1867 | break; | ||
| 1868 | } | ||
| 1869 | return 2; | ||
| 1870 | } | ||
| 1871 | |||
| 1872 | token->type = CHARACTER; | ||
| 1873 | #ifdef RE_ENABLE_I18N | ||
| 1874 | if (input->mb_cur_max > 1) | ||
| 1875 | { | ||
| 1876 | wint_t wc = re_string_wchar_at (input, re_string_cur_idx (input)); | ||
| 1877 | token->word_char = IS_WIDE_WORD_CHAR (wc) != 0; | ||
| 1878 | } | ||
| 1879 | else | ||
| 1880 | #endif | ||
| 1881 | token->word_char = IS_WORD_CHAR (token->opr.c); | ||
| 1882 | |||
| 1883 | switch (c) | ||
| 1884 | { | ||
| 1885 | case '\n': | ||
| 1886 | if (syntax & REG_NEWLINE_ALT) | ||
| 1887 | token->type = OP_ALT; | ||
| 1888 | break; | ||
| 1889 | case '|': | ||
| 1890 | if (!(syntax & REG_LIMITED_OPS) && (syntax & REG_NO_BK_VBAR)) | ||
| 1891 | token->type = OP_ALT; | ||
| 1892 | break; | ||
| 1893 | case '*': | ||
| 1894 | token->type = OP_DUP_ASTERISK; | ||
| 1895 | break; | ||
| 1896 | case '+': | ||
| 1897 | if (!(syntax & REG_LIMITED_OPS) && !(syntax & REG_BK_PLUS_QM)) | ||
| 1898 | token->type = OP_DUP_PLUS; | ||
| 1899 | break; | ||
| 1900 | case '?': | ||
| 1901 | if (!(syntax & REG_LIMITED_OPS) && !(syntax & REG_BK_PLUS_QM)) | ||
| 1902 | token->type = OP_DUP_QUESTION; | ||
| 1903 | break; | ||
| 1904 | case '{': | ||
| 1905 | if ((syntax & REG_INTERVALS) && (syntax & REG_NO_BK_BRACES)) | ||
| 1906 | token->type = OP_OPEN_DUP_NUM; | ||
| 1907 | break; | ||
| 1908 | case '}': | ||
| 1909 | if ((syntax & REG_INTERVALS) && (syntax & REG_NO_BK_BRACES)) | ||
| 1910 | token->type = OP_CLOSE_DUP_NUM; | ||
| 1911 | break; | ||
| 1912 | case '(': | ||
| 1913 | if (syntax & REG_NO_BK_PARENS) | ||
| 1914 | token->type = OP_OPEN_SUBEXP; | ||
| 1915 | break; | ||
| 1916 | case ')': | ||
| 1917 | if (syntax & REG_NO_BK_PARENS) | ||
| 1918 | token->type = OP_CLOSE_SUBEXP; | ||
| 1919 | break; | ||
| 1920 | case '[': | ||
| 1921 | token->type = OP_OPEN_BRACKET; | ||
| 1922 | break; | ||
| 1923 | case '.': | ||
| 1924 | token->type = OP_PERIOD; | ||
| 1925 | break; | ||
| 1926 | case '^': | ||
| 1927 | if (!(syntax & (REG_CONTEXT_INDEP_ANCHORS | REG_CARET_ANCHORS_HERE)) && | ||
| 1928 | re_string_cur_idx (input) != 0) | ||
| 1929 | { | ||
| 1930 | char prev = re_string_peek_byte (input, -1); | ||
| 1931 | if (!(syntax & REG_NEWLINE_ALT) || prev != '\n') | ||
| 1932 | break; | ||
| 1933 | } | ||
| 1934 | token->type = ANCHOR; | ||
| 1935 | token->opr.ctx_type = LINE_FIRST; | ||
| 1936 | break; | ||
| 1937 | case '$': | ||
| 1938 | if (!(syntax & REG_CONTEXT_INDEP_ANCHORS) && | ||
| 1939 | re_string_cur_idx (input) + 1 != re_string_length (input)) | ||
| 1940 | { | ||
| 1941 | re_token_t next; | ||
| 1942 | re_string_skip_bytes (input, 1); | ||
| 1943 | peek_token (&next, input, syntax); | ||
| 1944 | re_string_skip_bytes (input, -1); | ||
| 1945 | if (next.type != OP_ALT && next.type != OP_CLOSE_SUBEXP) | ||
| 1946 | break; | ||
| 1947 | } | ||
| 1948 | token->type = ANCHOR; | ||
| 1949 | token->opr.ctx_type = LINE_LAST; | ||
| 1950 | break; | ||
| 1951 | default: | ||
| 1952 | break; | ||
| 1953 | } | ||
| 1954 | return 1; | ||
| 1955 | } | ||
| 1956 | |||
| 1957 | /* Peek a token from INPUT, and return the length of the token. | ||
| 1958 | We must not use this function out of bracket expressions. */ | ||
| 1959 | |||
| 1960 | static int | ||
| 1961 | peek_token_bracket (re_token_t *token, re_string_t *input, reg_syntax_t syntax) | ||
| 1962 | { | ||
| 1963 | unsigned char c; | ||
| 1964 | if (re_string_eoi (input)) | ||
| 1965 | { | ||
| 1966 | token->type = END_OF_RE; | ||
| 1967 | return 0; | ||
| 1968 | } | ||
| 1969 | c = re_string_peek_byte (input, 0); | ||
| 1970 | token->opr.c = c; | ||
| 1971 | |||
| 1972 | #ifdef RE_ENABLE_I18N | ||
| 1973 | if (input->mb_cur_max > 1 && | ||
| 1974 | !re_string_first_byte (input, re_string_cur_idx (input))) | ||
| 1975 | { | ||
| 1976 | token->type = CHARACTER; | ||
| 1977 | return 1; | ||
| 1978 | } | ||
| 1979 | #endif /* RE_ENABLE_I18N */ | ||
| 1980 | |||
| 1981 | if (c == '\\' && (syntax & REG_BACKSLASH_ESCAPE_IN_LISTS) | ||
| 1982 | && re_string_cur_idx (input) + 1 < re_string_length (input)) | ||
| 1983 | { | ||
| 1984 | /* In this case, '\' escape a character. */ | ||
| 1985 | unsigned char c2; | ||
| 1986 | re_string_skip_bytes (input, 1); | ||
| 1987 | c2 = re_string_peek_byte (input, 0); | ||
| 1988 | token->opr.c = c2; | ||
| 1989 | token->type = CHARACTER; | ||
| 1990 | return 1; | ||
| 1991 | } | ||
| 1992 | if (c == '[') /* '[' is a special char in a bracket exps. */ | ||
| 1993 | { | ||
| 1994 | unsigned char c2; | ||
| 1995 | int token_len; | ||
| 1996 | if (re_string_cur_idx (input) + 1 < re_string_length (input)) | ||
| 1997 | c2 = re_string_peek_byte (input, 1); | ||
| 1998 | else | ||
| 1999 | c2 = 0; | ||
| 2000 | token->opr.c = c2; | ||
| 2001 | token_len = 2; | ||
| 2002 | switch (c2) | ||
| 2003 | { | ||
| 2004 | case '.': | ||
| 2005 | token->type = OP_OPEN_COLL_ELEM; | ||
| 2006 | break; | ||
| 2007 | case '=': | ||
| 2008 | token->type = OP_OPEN_EQUIV_CLASS; | ||
| 2009 | break; | ||
| 2010 | case ':': | ||
| 2011 | if (syntax & REG_CHAR_CLASSES) | ||
| 2012 | { | ||
| 2013 | token->type = OP_OPEN_CHAR_CLASS; | ||
| 2014 | break; | ||
| 2015 | } | ||
| 2016 | /* else fall through. */ | ||
| 2017 | default: | ||
| 2018 | token->type = CHARACTER; | ||
| 2019 | token->opr.c = c; | ||
| 2020 | token_len = 1; | ||
| 2021 | break; | ||
| 2022 | } | ||
| 2023 | return token_len; | ||
| 2024 | } | ||
| 2025 | switch (c) | ||
| 2026 | { | ||
| 2027 | case '-': | ||
| 2028 | token->type = OP_CHARSET_RANGE; | ||
| 2029 | break; | ||
| 2030 | case ']': | ||
| 2031 | token->type = OP_CLOSE_BRACKET; | ||
| 2032 | break; | ||
| 2033 | case '^': | ||
| 2034 | token->type = OP_NON_MATCH_LIST; | ||
| 2035 | break; | ||
| 2036 | default: | ||
| 2037 | token->type = CHARACTER; | ||
| 2038 | } | ||
| 2039 | return 1; | ||
| 2040 | } | ||
| 2041 | |||
| 2042 | /* Functions for parser. */ | ||
| 2043 | |||
| 2044 | /* Entry point of the parser. | ||
| 2045 | Parse the regular expression REGEXP and return the structure tree. | ||
| 2046 | If an error is occured, ERR is set by error code, and return NULL. | ||
| 2047 | This function build the following tree, from regular expression <reg_exp>: | ||
| 2048 | CAT | ||
| 2049 | / \ | ||
| 2050 | / \ | ||
| 2051 | <reg_exp> EOR | ||
| 2052 | |||
| 2053 | CAT means concatenation. | ||
| 2054 | EOR means end of regular expression. */ | ||
| 2055 | |||
| 2056 | static bin_tree_t * | ||
| 2057 | parse (re_string_t *regexp, regex_t *preg, reg_syntax_t syntax, | ||
| 2058 | reg_errcode_t *err) | ||
| 2059 | { | ||
| 2060 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 2061 | bin_tree_t *tree, *eor, *root; | ||
| 2062 | re_token_t current_token; | ||
| 2063 | dfa->syntax = syntax; | ||
| 2064 | fetch_token (¤t_token, regexp, syntax | REG_CARET_ANCHORS_HERE); | ||
| 2065 | tree = parse_reg_exp (regexp, preg, ¤t_token, syntax, 0, err); | ||
| 2066 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
| 2067 | return NULL; | ||
| 2068 | eor = create_tree (dfa, NULL, NULL, END_OF_RE); | ||
| 2069 | if (tree != NULL) | ||
| 2070 | root = create_tree (dfa, tree, eor, CONCAT); | ||
| 2071 | else | ||
| 2072 | root = eor; | ||
| 2073 | if (BE (eor == NULL || root == NULL, 0)) | ||
| 2074 | { | ||
| 2075 | *err = REG_ESPACE; | ||
| 2076 | return NULL; | ||
| 2077 | } | ||
| 2078 | return root; | ||
| 2079 | } | ||
| 2080 | |||
| 2081 | /* This function build the following tree, from regular expression | ||
| 2082 | <branch1>|<branch2>: | ||
| 2083 | ALT | ||
| 2084 | / \ | ||
| 2085 | / \ | ||
| 2086 | <branch1> <branch2> | ||
| 2087 | |||
| 2088 | ALT means alternative, which represents the operator `|'. */ | ||
| 2089 | |||
| 2090 | static bin_tree_t * | ||
| 2091 | parse_reg_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
| 2092 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
| 2093 | { | ||
| 2094 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 2095 | bin_tree_t *tree, *branch = NULL; | ||
| 2096 | tree = parse_branch (regexp, preg, token, syntax, nest, err); | ||
| 2097 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
| 2098 | return NULL; | ||
| 2099 | |||
| 2100 | while (token->type == OP_ALT) | ||
| 2101 | { | ||
| 2102 | fetch_token (token, regexp, syntax | REG_CARET_ANCHORS_HERE); | ||
| 2103 | if (token->type != OP_ALT && token->type != END_OF_RE | ||
| 2104 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | ||
| 2105 | { | ||
| 2106 | branch = parse_branch (regexp, preg, token, syntax, nest, err); | ||
| 2107 | if (BE (*err != REG_NOERROR && branch == NULL, 0)) | ||
| 2108 | return NULL; | ||
| 2109 | } | ||
| 2110 | else | ||
| 2111 | branch = NULL; | ||
| 2112 | tree = create_tree (dfa, tree, branch, OP_ALT); | ||
| 2113 | if (BE (tree == NULL, 0)) | ||
| 2114 | { | ||
| 2115 | *err = REG_ESPACE; | ||
| 2116 | return NULL; | ||
| 2117 | } | ||
| 2118 | } | ||
| 2119 | return tree; | ||
| 2120 | } | ||
| 2121 | |||
| 2122 | /* This function build the following tree, from regular expression | ||
| 2123 | <exp1><exp2>: | ||
| 2124 | CAT | ||
| 2125 | / \ | ||
| 2126 | / \ | ||
| 2127 | <exp1> <exp2> | ||
| 2128 | |||
| 2129 | CAT means concatenation. */ | ||
| 2130 | |||
| 2131 | static bin_tree_t * | ||
| 2132 | parse_branch (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
| 2133 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
| 2134 | { | ||
| 2135 | bin_tree_t *tree, *exp; | ||
| 2136 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 2137 | tree = parse_expression (regexp, preg, token, syntax, nest, err); | ||
| 2138 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
| 2139 | return NULL; | ||
| 2140 | |||
| 2141 | while (token->type != OP_ALT && token->type != END_OF_RE | ||
| 2142 | && (nest == 0 || token->type != OP_CLOSE_SUBEXP)) | ||
| 2143 | { | ||
| 2144 | exp = parse_expression (regexp, preg, token, syntax, nest, err); | ||
| 2145 | if (BE (*err != REG_NOERROR && exp == NULL, 0)) | ||
| 2146 | { | ||
| 2147 | return NULL; | ||
| 2148 | } | ||
| 2149 | if (tree != NULL && exp != NULL) | ||
| 2150 | { | ||
| 2151 | tree = create_tree (dfa, tree, exp, CONCAT); | ||
| 2152 | if (tree == NULL) | ||
| 2153 | { | ||
| 2154 | *err = REG_ESPACE; | ||
| 2155 | return NULL; | ||
| 2156 | } | ||
| 2157 | } | ||
| 2158 | else if (tree == NULL) | ||
| 2159 | tree = exp; | ||
| 2160 | /* Otherwise exp == NULL, we don't need to create new tree. */ | ||
| 2161 | } | ||
| 2162 | return tree; | ||
| 2163 | } | ||
| 2164 | |||
| 2165 | /* This function build the following tree, from regular expression a*: | ||
| 2166 | * | ||
| 2167 | | | ||
| 2168 | a | ||
| 2169 | */ | ||
| 2170 | |||
| 2171 | static bin_tree_t * | ||
| 2172 | parse_expression (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
| 2173 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
| 2174 | { | ||
| 2175 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 2176 | bin_tree_t *tree; | ||
| 2177 | switch (token->type) | ||
| 2178 | { | ||
| 2179 | case CHARACTER: | ||
| 2180 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
| 2181 | if (BE (tree == NULL, 0)) | ||
| 2182 | { | ||
| 2183 | *err = REG_ESPACE; | ||
| 2184 | return NULL; | ||
| 2185 | } | ||
| 2186 | #ifdef RE_ENABLE_I18N | ||
| 2187 | if (dfa->mb_cur_max > 1) | ||
| 2188 | { | ||
| 2189 | while (!re_string_eoi (regexp) | ||
| 2190 | && !re_string_first_byte (regexp, re_string_cur_idx (regexp))) | ||
| 2191 | { | ||
| 2192 | bin_tree_t *mbc_remain; | ||
| 2193 | fetch_token (token, regexp, syntax); | ||
| 2194 | mbc_remain = create_token_tree (dfa, NULL, NULL, token); | ||
| 2195 | tree = create_tree (dfa, tree, mbc_remain, CONCAT); | ||
| 2196 | if (BE (mbc_remain == NULL || tree == NULL, 0)) | ||
| 2197 | { | ||
| 2198 | *err = REG_ESPACE; | ||
| 2199 | return NULL; | ||
| 2200 | } | ||
| 2201 | } | ||
| 2202 | } | ||
| 2203 | #endif | ||
| 2204 | break; | ||
| 2205 | case OP_OPEN_SUBEXP: | ||
| 2206 | tree = parse_sub_exp (regexp, preg, token, syntax, nest + 1, err); | ||
| 2207 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
| 2208 | return NULL; | ||
| 2209 | break; | ||
| 2210 | case OP_OPEN_BRACKET: | ||
| 2211 | tree = parse_bracket_exp (regexp, dfa, token, syntax, err); | ||
| 2212 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
| 2213 | return NULL; | ||
| 2214 | break; | ||
| 2215 | case OP_BACK_REF: | ||
| 2216 | if (!BE (dfa->completed_bkref_map & (1 << token->opr.idx), 1)) | ||
| 2217 | { | ||
| 2218 | *err = REG_ESUBREG; | ||
| 2219 | return NULL; | ||
| 2220 | } | ||
| 2221 | dfa->used_bkref_map |= 1 << token->opr.idx; | ||
| 2222 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
| 2223 | if (BE (tree == NULL, 0)) | ||
| 2224 | { | ||
| 2225 | *err = REG_ESPACE; | ||
| 2226 | return NULL; | ||
| 2227 | } | ||
| 2228 | ++dfa->nbackref; | ||
| 2229 | dfa->has_mb_node = 1; | ||
| 2230 | break; | ||
| 2231 | case OP_OPEN_DUP_NUM: | ||
| 2232 | if (syntax & REG_CONTEXT_INVALID_DUP) | ||
| 2233 | { | ||
| 2234 | *err = REG_BADRPT; | ||
| 2235 | return NULL; | ||
| 2236 | } | ||
| 2237 | /* FALLTHROUGH */ | ||
| 2238 | case OP_DUP_ASTERISK: | ||
| 2239 | case OP_DUP_PLUS: | ||
| 2240 | case OP_DUP_QUESTION: | ||
| 2241 | if (syntax & REG_CONTEXT_INVALID_OPS) | ||
| 2242 | { | ||
| 2243 | *err = REG_BADRPT; | ||
| 2244 | return NULL; | ||
| 2245 | } | ||
| 2246 | else if (syntax & REG_CONTEXT_INDEP_OPS) | ||
| 2247 | { | ||
| 2248 | fetch_token (token, regexp, syntax); | ||
| 2249 | return parse_expression (regexp, preg, token, syntax, nest, err); | ||
| 2250 | } | ||
| 2251 | /* else fall through */ | ||
| 2252 | case OP_CLOSE_SUBEXP: | ||
| 2253 | if ((token->type == OP_CLOSE_SUBEXP) && | ||
| 2254 | !(syntax & REG_UNMATCHED_RIGHT_PAREN_ORD)) | ||
| 2255 | { | ||
| 2256 | *err = REG_ERPAREN; | ||
| 2257 | return NULL; | ||
| 2258 | } | ||
| 2259 | /* else fall through */ | ||
| 2260 | case OP_CLOSE_DUP_NUM: | ||
| 2261 | /* We treat it as a normal character. */ | ||
| 2262 | |||
| 2263 | /* Then we can these characters as normal characters. */ | ||
| 2264 | token->type = CHARACTER; | ||
| 2265 | /* mb_partial and word_char bits should be initialized already | ||
| 2266 | by peek_token. */ | ||
| 2267 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
| 2268 | if (BE (tree == NULL, 0)) | ||
| 2269 | { | ||
| 2270 | *err = REG_ESPACE; | ||
| 2271 | return NULL; | ||
| 2272 | } | ||
| 2273 | break; | ||
| 2274 | case ANCHOR: | ||
| 2275 | if ((token->opr.ctx_type | ||
| 2276 | & (WORD_DELIM | NOT_WORD_DELIM | WORD_FIRST | WORD_LAST)) | ||
| 2277 | && dfa->word_ops_used == 0) | ||
| 2278 | init_word_char (dfa); | ||
| 2279 | if (token->opr.ctx_type == WORD_DELIM | ||
| 2280 | || token->opr.ctx_type == NOT_WORD_DELIM) | ||
| 2281 | { | ||
| 2282 | bin_tree_t *tree_first, *tree_last; | ||
| 2283 | if (token->opr.ctx_type == WORD_DELIM) | ||
| 2284 | { | ||
| 2285 | token->opr.ctx_type = WORD_FIRST; | ||
| 2286 | tree_first = create_token_tree (dfa, NULL, NULL, token); | ||
| 2287 | token->opr.ctx_type = WORD_LAST; | ||
| 2288 | } | ||
| 2289 | else | ||
| 2290 | { | ||
| 2291 | token->opr.ctx_type = INSIDE_WORD; | ||
| 2292 | tree_first = create_token_tree (dfa, NULL, NULL, token); | ||
| 2293 | token->opr.ctx_type = INSIDE_NOTWORD; | ||
| 2294 | } | ||
| 2295 | tree_last = create_token_tree (dfa, NULL, NULL, token); | ||
| 2296 | tree = create_tree (dfa, tree_first, tree_last, OP_ALT); | ||
| 2297 | if (BE (tree_first == NULL || tree_last == NULL || tree == NULL, 0)) | ||
| 2298 | { | ||
| 2299 | *err = REG_ESPACE; | ||
| 2300 | return NULL; | ||
| 2301 | } | ||
| 2302 | } | ||
| 2303 | else | ||
| 2304 | { | ||
| 2305 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
| 2306 | if (BE (tree == NULL, 0)) | ||
| 2307 | { | ||
| 2308 | *err = REG_ESPACE; | ||
| 2309 | return NULL; | ||
| 2310 | } | ||
| 2311 | } | ||
| 2312 | /* We must return here, since ANCHORs can't be followed | ||
| 2313 | by repetition operators. | ||
| 2314 | eg. RE"^*" is invalid or "<ANCHOR(^)><CHAR(*)>", | ||
| 2315 | it must not be "<ANCHOR(^)><REPEAT(*)>". */ | ||
| 2316 | fetch_token (token, regexp, syntax); | ||
| 2317 | return tree; | ||
| 2318 | case OP_PERIOD: | ||
| 2319 | tree = create_token_tree (dfa, NULL, NULL, token); | ||
| 2320 | if (BE (tree == NULL, 0)) | ||
| 2321 | { | ||
| 2322 | *err = REG_ESPACE; | ||
| 2323 | return NULL; | ||
| 2324 | } | ||
| 2325 | if (dfa->mb_cur_max > 1) | ||
| 2326 | dfa->has_mb_node = 1; | ||
| 2327 | break; | ||
| 2328 | case OP_WORD: | ||
| 2329 | case OP_NOTWORD: | ||
| 2330 | tree = build_charclass_op (dfa, regexp->trans, | ||
| 2331 | (const unsigned char *) "alnum", | ||
| 2332 | (const unsigned char *) "_", | ||
| 2333 | token->type == OP_NOTWORD, err); | ||
| 2334 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
| 2335 | return NULL; | ||
| 2336 | break; | ||
| 2337 | case OP_SPACE: | ||
| 2338 | case OP_NOTSPACE: | ||
| 2339 | tree = build_charclass_op (dfa, regexp->trans, | ||
| 2340 | (const unsigned char *) "space", | ||
| 2341 | (const unsigned char *) "", | ||
| 2342 | token->type == OP_NOTSPACE, err); | ||
| 2343 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
| 2344 | return NULL; | ||
| 2345 | break; | ||
| 2346 | case OP_ALT: | ||
| 2347 | case END_OF_RE: | ||
| 2348 | return NULL; | ||
| 2349 | case BACK_SLASH: | ||
| 2350 | *err = REG_EESCAPE; | ||
| 2351 | return NULL; | ||
| 2352 | default: | ||
| 2353 | /* Must not happen? */ | ||
| 2354 | #ifdef DEBUG | ||
| 2355 | assert (0); | ||
| 2356 | #endif | ||
| 2357 | return NULL; | ||
| 2358 | } | ||
| 2359 | fetch_token (token, regexp, syntax); | ||
| 2360 | |||
| 2361 | while (token->type == OP_DUP_ASTERISK || token->type == OP_DUP_PLUS | ||
| 2362 | || token->type == OP_DUP_QUESTION || token->type == OP_OPEN_DUP_NUM) | ||
| 2363 | { | ||
| 2364 | tree = parse_dup_op (tree, regexp, dfa, token, syntax, err); | ||
| 2365 | if (BE (*err != REG_NOERROR && tree == NULL, 0)) | ||
| 2366 | return NULL; | ||
| 2367 | /* In BRE consecutive duplications are not allowed. */ | ||
| 2368 | if ((syntax & REG_CONTEXT_INVALID_DUP) | ||
| 2369 | && (token->type == OP_DUP_ASTERISK | ||
| 2370 | || token->type == OP_OPEN_DUP_NUM)) | ||
| 2371 | { | ||
| 2372 | *err = REG_BADRPT; | ||
| 2373 | return NULL; | ||
| 2374 | } | ||
| 2375 | } | ||
| 2376 | |||
| 2377 | return tree; | ||
| 2378 | } | ||
| 2379 | |||
| 2380 | /* This function build the following tree, from regular expression | ||
| 2381 | (<reg_exp>): | ||
| 2382 | SUBEXP | ||
| 2383 | | | ||
| 2384 | <reg_exp> | ||
| 2385 | */ | ||
| 2386 | |||
| 2387 | static bin_tree_t * | ||
| 2388 | parse_sub_exp (re_string_t *regexp, regex_t *preg, re_token_t *token, | ||
| 2389 | reg_syntax_t syntax, Idx nest, reg_errcode_t *err) | ||
| 2390 | { | ||
| 2391 | re_dfa_t *dfa = (re_dfa_t *) preg->re_buffer; | ||
| 2392 | bin_tree_t *tree; | ||
| 2393 | size_t cur_nsub; | ||
| 2394 | cur_nsub = preg->re_nsub++; | ||
| 2395 | |||
| 2396 | fetch_token (token, regexp, syntax | REG_CARET_ANCHORS_HERE); | ||
| 2397 | |||
| 2398 | /* The subexpression may be a null string. */ | ||
| 2399 | if (token->type == OP_CLOSE_SUBEXP) | ||
| 2400 | tree = NULL; | ||
| 2401 | else | ||
| 2402 | { | ||
| 2403 | tree = parse_reg_exp (regexp, preg, token, syntax, nest, err); | ||
| 2404 | if (BE (*err == REG_NOERROR && token->type != OP_CLOSE_SUBEXP, 0)) | ||
| 2405 | *err = REG_EPAREN; | ||
| 2406 | if (BE (*err != REG_NOERROR, 0)) | ||
| 2407 | return NULL; | ||
| 2408 | } | ||
| 2409 | |||
| 2410 | if (cur_nsub <= '9' - '1') | ||
| 2411 | dfa->completed_bkref_map |= 1 << cur_nsub; | ||
| 2412 | |||
| 2413 | tree = create_tree (dfa, tree, NULL, SUBEXP); | ||
| 2414 | if (BE (tree == NULL, 0)) | ||
| 2415 | { | ||
| 2416 | *err = REG_ESPACE; | ||
| 2417 | return NULL; | ||
| 2418 | } | ||
| 2419 | tree->token.opr.idx = cur_nsub; | ||
| 2420 | return tree; | ||
| 2421 | } | ||
| 2422 | |||
| 2423 | /* This function parse repetition operators like "*", "+", "{1,3}" etc. */ | ||
| 2424 | |||
| 2425 | static bin_tree_t * | ||
| 2426 | parse_dup_op (bin_tree_t *elem, re_string_t *regexp, re_dfa_t *dfa, | ||
| 2427 | re_token_t *token, reg_syntax_t syntax, reg_errcode_t *err) | ||
| 2428 | { | ||
| 2429 | bin_tree_t *tree = NULL, *old_tree = NULL; | ||
| 2430 | Idx i, start, end, start_idx = re_string_cur_idx (regexp); | ||
| 2431 | re_token_t start_token = *token; | ||
| 2432 | |||
| 2433 | if (token->type == OP_OPEN_DUP_NUM) | ||
| 2434 | { | ||
| 2435 | end = 0; | ||
| 2436 | start = fetch_number (regexp, token, syntax); | ||
| 2437 | if (start == REG_MISSING) | ||
| 2438 | { | ||
| 2439 | if (token->type == CHARACTER && token->opr.c == ',') | ||
| 2440 | start = 0; /* We treat "{,m}" as "{0,m}". */ | ||
| 2441 | else | ||
| 2442 | { | ||
| 2443 | *err = REG_BADBR; /* <re>{} is invalid. */ | ||
| 2444 | return NULL; | ||
| 2445 | } | ||
| 2446 | } | ||
| 2447 | if (BE (start != REG_ERROR, 1)) | ||
| 2448 | { | ||
| 2449 | /* We treat "{n}" as "{n,n}". */ | ||
| 2450 | end = ((token->type == OP_CLOSE_DUP_NUM) ? start | ||
| 2451 | : ((token->type == CHARACTER && token->opr.c == ',') | ||
| 2452 | ? fetch_number (regexp, token, syntax) : REG_ERROR)); | ||
| 2453 | } | ||
| 2454 | if (BE (start == REG_ERROR || end == REG_ERROR, 0)) | ||
| 2455 | { | ||
| 2456 | /* Invalid sequence. */ | ||
| 2457 | if (BE (!(syntax & REG_INVALID_INTERVAL_ORD), 0)) | ||
| 2458 | { | ||
| 2459 | if (token->type == END_OF_RE) | ||
| 2460 | *err = REG_EBRACE; | ||
| 2461 | else | ||
| 2462 | *err = REG_BADBR; | ||
| 2463 | |||
| 2464 | return NULL; | ||
| 2465 | } | ||
| 2466 | |||
| 2467 | /* If the syntax bit is set, rollback. */ | ||
| 2468 | re_string_set_index (regexp, start_idx); | ||
| 2469 | *token = start_token; | ||
| 2470 | token->type = CHARACTER; | ||
| 2471 | /* mb_partial and word_char bits should be already initialized by | ||
| 2472 | peek_token. */ | ||
| 2473 | return elem; | ||
| 2474 | } | ||
| 2475 | |||
| 2476 | if (BE (end != REG_MISSING && start > end, 0)) | ||
| 2477 | { | ||
| 2478 | /* First number greater than second. */ | ||
| 2479 | *err = REG_BADBR; | ||
| 2480 | return NULL; | ||
| 2481 | } | ||
| 2482 | } | ||
| 2483 | else | ||
| 2484 | { | ||
| 2485 | start = (token->type == OP_DUP_PLUS) ? 1 : 0; | ||
| 2486 | end = (token->type == OP_DUP_QUESTION) ? 1 : REG_MISSING; | ||
| 2487 | } | ||
| 2488 | |||
| 2489 | fetch_token (token, regexp, syntax); | ||
| 2490 | |||
| 2491 | if (BE (elem == NULL, 0)) | ||
| 2492 | return NULL; | ||
| 2493 | if (BE (start == 0 && end == 0, 0)) | ||
| 2494 | { | ||
| 2495 | postorder (elem, free_tree, NULL); | ||
| 2496 | return NULL; | ||
| 2497 | } | ||
| 2498 | |||
| 2499 | /* Extract "<re>{n,m}" to "<re><re>...<re><re>{0,<m-n>}". */ | ||
| 2500 | if (BE (start > 0, 0)) | ||
| 2501 | { | ||
| 2502 | tree = elem; | ||
| 2503 | for (i = 2; i <= start; ++i) | ||
| 2504 | { | ||
| 2505 | elem = duplicate_tree (elem, dfa); | ||
| 2506 | tree = create_tree (dfa, tree, elem, CONCAT); | ||
| 2507 | if (BE (elem == NULL || tree == NULL, 0)) | ||
| 2508 | goto parse_dup_op_espace; | ||
| 2509 | } | ||
| 2510 | |||
| 2511 | if (start == end) | ||
| 2512 | return tree; | ||
| 2513 | |||
| 2514 | /* Duplicate ELEM before it is marked optional. */ | ||
| 2515 | elem = duplicate_tree (elem, dfa); | ||
| 2516 | old_tree = tree; | ||
| 2517 | } | ||
| 2518 | else | ||
| 2519 | old_tree = NULL; | ||
| 2520 | |||
| 2521 | if (elem->token.type == SUBEXP) | ||
| 2522 | postorder (elem, mark_opt_subexp, (void *) (long) elem->token.opr.idx); | ||
| 2523 | |||
| 2524 | tree = create_tree (dfa, elem, NULL, | ||
| 2525 | (end == REG_MISSING ? OP_DUP_ASTERISK : OP_ALT)); | ||
| 2526 | if (BE (tree == NULL, 0)) | ||
| 2527 | goto parse_dup_op_espace; | ||
| 2528 | |||
| 2529 | /* This loop is actually executed only when end != REG_MISSING, | ||
| 2530 | to rewrite <re>{0,n} as (<re>(<re>...<re>?)?)?... We have | ||
| 2531 | already created the start+1-th copy. */ | ||
| 2532 | if ((Idx) -1 < 0 || end != REG_MISSING) | ||
| 2533 | for (i = start + 2; i <= end; ++i) | ||
| 2534 | { | ||
| 2535 | elem = duplicate_tree (elem, dfa); | ||
| 2536 | tree = create_tree (dfa, tree, elem, CONCAT); | ||
| 2537 | if (BE (elem == NULL || tree == NULL, 0)) | ||
| 2538 | goto parse_dup_op_espace; | ||
| 2539 | |||
| 2540 | tree = create_tree (dfa, tree, NULL, OP_ALT); | ||
| 2541 | if (BE (tree == NULL, 0)) | ||
| 2542 | goto parse_dup_op_espace; | ||
| 2543 | } | ||
| 2544 | |||
| 2545 | if (old_tree) | ||
| 2546 | tree = create_tree (dfa, old_tree, tree, CONCAT); | ||
| 2547 | |||
| 2548 | return tree; | ||
| 2549 | |||
| 2550 | parse_dup_op_espace: | ||
| 2551 | *err = REG_ESPACE; | ||
| 2552 | return NULL; | ||
| 2553 | } | ||
| 2554 | |||
| 2555 | /* Size of the names for collating symbol/equivalence_class/character_class. | ||
| 2556 | I'm not sure, but maybe enough. */ | ||
| 2557 | #define BRACKET_NAME_BUF_SIZE 32 | ||
| 2558 | |||
| 2559 | #ifndef _LIBC | ||
| 2560 | /* Local function for parse_bracket_exp only used in case of NOT _LIBC. | ||
| 2561 | Build the range expression which starts from START_ELEM, and ends | ||
| 2562 | at END_ELEM. The result are written to MBCSET and SBCSET. | ||
| 2563 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | ||
| 2564 | mbcset->range_ends, is a pointer argument sinse we may | ||
| 2565 | update it. */ | ||
| 2566 | |||
| 2567 | static reg_errcode_t | ||
| 2568 | build_range_exp (bitset sbcset, | ||
| 2569 | # ifdef RE_ENABLE_I18N | ||
| 2570 | re_charset_t *mbcset, Idx *range_alloc, | ||
| 2571 | # endif | ||
| 2572 | bracket_elem_t *start_elem, bracket_elem_t *end_elem) | ||
| 2573 | { | ||
| 2574 | unsigned int start_ch, end_ch; | ||
| 2575 | /* Equivalence Classes and Character Classes can't be a range start/end. */ | ||
| 2576 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | ||
| 2577 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | ||
| 2578 | 0)) | ||
| 2579 | return REG_ERANGE; | ||
| 2580 | |||
| 2581 | /* We can handle no multi character collating elements without libc | ||
| 2582 | support. */ | ||
| 2583 | if (BE ((start_elem->type == COLL_SYM | ||
| 2584 | && strlen ((char *) start_elem->opr.name) > 1) | ||
| 2585 | || (end_elem->type == COLL_SYM | ||
| 2586 | && strlen ((char *) end_elem->opr.name) > 1), 0)) | ||
| 2587 | return REG_ECOLLATE; | ||
| 2588 | |||
| 2589 | # ifdef RE_ENABLE_I18N | ||
| 2590 | { | ||
| 2591 | wchar_t wc; | ||
| 2592 | wint_t start_wc, end_wc; | ||
| 2593 | wchar_t cmp_buf[6] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; | ||
| 2594 | |||
| 2595 | start_ch = ((start_elem->type == SB_CHAR) ? start_elem->opr.ch | ||
| 2596 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | ||
| 2597 | : 0)); | ||
| 2598 | end_ch = ((end_elem->type == SB_CHAR) ? end_elem->opr.ch | ||
| 2599 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | ||
| 2600 | : 0)); | ||
| 2601 | start_wc = ((start_elem->type == SB_CHAR || start_elem->type == COLL_SYM) | ||
| 2602 | ? __btowc (start_ch) : start_elem->opr.wch); | ||
| 2603 | end_wc = ((end_elem->type == SB_CHAR || end_elem->type == COLL_SYM) | ||
| 2604 | ? __btowc (end_ch) : end_elem->opr.wch); | ||
| 2605 | if (start_wc == WEOF || end_wc == WEOF) | ||
| 2606 | return REG_ECOLLATE; | ||
| 2607 | cmp_buf[0] = start_wc; | ||
| 2608 | cmp_buf[4] = end_wc; | ||
| 2609 | if (wcscoll (cmp_buf, cmp_buf + 4) > 0) | ||
| 2610 | return REG_ERANGE; | ||
| 2611 | |||
| 2612 | /* Got valid collation sequence values, add them as a new entry. | ||
| 2613 | However, for !_LIBC we have no collation elements: if the | ||
| 2614 | character set is single byte, the single byte character set | ||
| 2615 | that we build below suffices. parse_bracket_exp passes | ||
| 2616 | no MBCSET if dfa->mb_cur_max == 1. */ | ||
| 2617 | if (mbcset) | ||
| 2618 | { | ||
| 2619 | /* Check the space of the arrays. */ | ||
| 2620 | if (BE (*range_alloc == mbcset->nranges, 0)) | ||
| 2621 | { | ||
| 2622 | /* There is not enough space, need realloc. */ | ||
| 2623 | wchar_t *new_array_start, *new_array_end; | ||
| 2624 | Idx new_nranges; | ||
| 2625 | |||
| 2626 | new_nranges = mbcset->nranges; | ||
| 2627 | /* Use realloc since mbcset->range_starts and mbcset->range_ends | ||
| 2628 | are NULL if *range_alloc == 0. */ | ||
| 2629 | new_array_start = re_x2realloc (mbcset->range_starts, wchar_t, | ||
| 2630 | &new_nranges); | ||
| 2631 | new_array_end = re_realloc (mbcset->range_ends, wchar_t, | ||
| 2632 | new_nranges); | ||
| 2633 | |||
| 2634 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | ||
| 2635 | return REG_ESPACE; | ||
| 2636 | |||
| 2637 | mbcset->range_starts = new_array_start; | ||
| 2638 | mbcset->range_ends = new_array_end; | ||
| 2639 | *range_alloc = new_nranges; | ||
| 2640 | } | ||
| 2641 | |||
| 2642 | mbcset->range_starts[mbcset->nranges] = start_wc; | ||
| 2643 | mbcset->range_ends[mbcset->nranges++] = end_wc; | ||
| 2644 | } | ||
| 2645 | |||
| 2646 | /* Build the table for single byte characters. */ | ||
| 2647 | for (wc = 0; wc < SBC_MAX; ++wc) | ||
| 2648 | { | ||
| 2649 | cmp_buf[2] = wc; | ||
| 2650 | if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 | ||
| 2651 | && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) | ||
| 2652 | bitset_set (sbcset, wc); | ||
| 2653 | } | ||
| 2654 | } | ||
| 2655 | # else /* not RE_ENABLE_I18N */ | ||
| 2656 | { | ||
| 2657 | unsigned int ch; | ||
| 2658 | start_ch = ((start_elem->type == SB_CHAR ) ? start_elem->opr.ch | ||
| 2659 | : ((start_elem->type == COLL_SYM) ? start_elem->opr.name[0] | ||
| 2660 | : 0)); | ||
| 2661 | end_ch = ((end_elem->type == SB_CHAR ) ? end_elem->opr.ch | ||
| 2662 | : ((end_elem->type == COLL_SYM) ? end_elem->opr.name[0] | ||
| 2663 | : 0)); | ||
| 2664 | if (start_ch > end_ch) | ||
| 2665 | return REG_ERANGE; | ||
| 2666 | /* Build the table for single byte characters. */ | ||
| 2667 | for (ch = 0; ch < SBC_MAX; ++ch) | ||
| 2668 | if (start_ch <= ch && ch <= end_ch) | ||
| 2669 | bitset_set (sbcset, ch); | ||
| 2670 | } | ||
| 2671 | # endif /* not RE_ENABLE_I18N */ | ||
| 2672 | return REG_NOERROR; | ||
| 2673 | } | ||
| 2674 | #endif /* not _LIBC */ | ||
| 2675 | |||
| 2676 | #ifndef _LIBC | ||
| 2677 | /* Helper function for parse_bracket_exp only used in case of NOT _LIBC.. | ||
| 2678 | Build the collating element which is represented by NAME. | ||
| 2679 | The result are written to MBCSET and SBCSET. | ||
| 2680 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | ||
| 2681 | pointer argument since we may update it. */ | ||
| 2682 | |||
| 2683 | static reg_errcode_t | ||
| 2684 | build_collating_symbol (bitset sbcset, | ||
| 2685 | # ifdef RE_ENABLE_I18N | ||
| 2686 | re_charset_t *mbcset, Idx *coll_sym_alloc, | ||
| 2687 | # endif | ||
| 2688 | const unsigned char *name) | ||
| 2689 | { | ||
| 2690 | size_t name_len = strlen ((const char *) name); | ||
| 2691 | if (BE (name_len != 1, 0)) | ||
| 2692 | return REG_ECOLLATE; | ||
| 2693 | else | ||
| 2694 | { | ||
| 2695 | bitset_set (sbcset, name[0]); | ||
| 2696 | return REG_NOERROR; | ||
| 2697 | } | ||
| 2698 | } | ||
| 2699 | #endif /* not _LIBC */ | ||
| 2700 | |||
| 2701 | /* This function parse bracket expression like "[abc]", "[a-c]", | ||
| 2702 | "[[.a-a.]]" etc. */ | ||
| 2703 | |||
| 2704 | static bin_tree_t * | ||
| 2705 | parse_bracket_exp (re_string_t *regexp, re_dfa_t *dfa, re_token_t *token, | ||
| 2706 | reg_syntax_t syntax, reg_errcode_t *err) | ||
| 2707 | { | ||
| 2708 | #ifdef _LIBC | ||
| 2709 | const unsigned char *collseqmb; | ||
| 2710 | const char *collseqwc; | ||
| 2711 | uint32_t nrules; | ||
| 2712 | int32_t table_size; | ||
| 2713 | const int32_t *symb_table; | ||
| 2714 | const unsigned char *extra; | ||
| 2715 | |||
| 2716 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
| 2717 | Seek the collating symbol entry correspondings to NAME. | ||
| 2718 | Return the index of the symbol in the SYMB_TABLE. */ | ||
| 2719 | |||
| 2720 | auto inline int32_t | ||
| 2721 | __attribute ((always_inline)) | ||
| 2722 | seek_collating_symbol_entry (const unsigned char *name, size_t name_len) | ||
| 2723 | { | ||
| 2724 | int32_t hash = elem_hash ((const char *) name, name_len); | ||
| 2725 | int32_t elem = hash % table_size; | ||
| 2726 | int32_t second = hash % (table_size - 2); | ||
| 2727 | while (symb_table[2 * elem] != 0) | ||
| 2728 | { | ||
| 2729 | /* First compare the hashing value. */ | ||
| 2730 | if (symb_table[2 * elem] == hash | ||
| 2731 | /* Compare the length of the name. */ | ||
| 2732 | && name_len == extra[symb_table[2 * elem + 1]] | ||
| 2733 | /* Compare the name. */ | ||
| 2734 | && memcmp (name, &extra[symb_table[2 * elem + 1] + 1], | ||
| 2735 | name_len) == 0) | ||
| 2736 | { | ||
| 2737 | /* Yep, this is the entry. */ | ||
| 2738 | break; | ||
| 2739 | } | ||
| 2740 | |||
| 2741 | /* Next entry. */ | ||
| 2742 | elem += second; | ||
| 2743 | } | ||
| 2744 | return elem; | ||
| 2745 | } | ||
| 2746 | |||
| 2747 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
| 2748 | Look up the collation sequence value of BR_ELEM. | ||
| 2749 | Return the value if succeeded, UINT_MAX otherwise. */ | ||
| 2750 | |||
| 2751 | auto inline unsigned int | ||
| 2752 | __attribute ((always_inline)) | ||
| 2753 | lookup_collation_sequence_value (bracket_elem_t *br_elem) | ||
| 2754 | { | ||
| 2755 | if (br_elem->type == SB_CHAR) | ||
| 2756 | { | ||
| 2757 | /* | ||
| 2758 | if (MB_CUR_MAX == 1) | ||
| 2759 | */ | ||
| 2760 | if (nrules == 0) | ||
| 2761 | return collseqmb[br_elem->opr.ch]; | ||
| 2762 | else | ||
| 2763 | { | ||
| 2764 | wint_t wc = __btowc (br_elem->opr.ch); | ||
| 2765 | return __collseq_table_lookup (collseqwc, wc); | ||
| 2766 | } | ||
| 2767 | } | ||
| 2768 | else if (br_elem->type == MB_CHAR) | ||
| 2769 | { | ||
| 2770 | return __collseq_table_lookup (collseqwc, br_elem->opr.wch); | ||
| 2771 | } | ||
| 2772 | else if (br_elem->type == COLL_SYM) | ||
| 2773 | { | ||
| 2774 | size_t sym_name_len = strlen ((char *) br_elem->opr.name); | ||
| 2775 | if (nrules != 0) | ||
| 2776 | { | ||
| 2777 | int32_t elem, idx; | ||
| 2778 | elem = seek_collating_symbol_entry (br_elem->opr.name, | ||
| 2779 | sym_name_len); | ||
| 2780 | if (symb_table[2 * elem] != 0) | ||
| 2781 | { | ||
| 2782 | /* We found the entry. */ | ||
| 2783 | idx = symb_table[2 * elem + 1]; | ||
| 2784 | /* Skip the name of collating element name. */ | ||
| 2785 | idx += 1 + extra[idx]; | ||
| 2786 | /* Skip the byte sequence of the collating element. */ | ||
| 2787 | idx += 1 + extra[idx]; | ||
| 2788 | /* Adjust for the alignment. */ | ||
| 2789 | idx = (idx + 3) & ~3; | ||
| 2790 | /* Skip the multibyte collation sequence value. */ | ||
| 2791 | idx += sizeof (unsigned int); | ||
| 2792 | /* Skip the wide char sequence of the collating element. */ | ||
| 2793 | idx += sizeof (unsigned int) * | ||
| 2794 | (1 + *(unsigned int *) (extra + idx)); | ||
| 2795 | /* Return the collation sequence value. */ | ||
| 2796 | return *(unsigned int *) (extra + idx); | ||
| 2797 | } | ||
| 2798 | else if (symb_table[2 * elem] == 0 && sym_name_len == 1) | ||
| 2799 | { | ||
| 2800 | /* No valid character. Match it as a single byte | ||
| 2801 | character. */ | ||
| 2802 | return collseqmb[br_elem->opr.name[0]]; | ||
| 2803 | } | ||
| 2804 | } | ||
| 2805 | else if (sym_name_len == 1) | ||
| 2806 | return collseqmb[br_elem->opr.name[0]]; | ||
| 2807 | } | ||
| 2808 | return UINT_MAX; | ||
| 2809 | } | ||
| 2810 | |||
| 2811 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
| 2812 | Build the range expression which starts from START_ELEM, and ends | ||
| 2813 | at END_ELEM. The result are written to MBCSET and SBCSET. | ||
| 2814 | RANGE_ALLOC is the allocated size of mbcset->range_starts, and | ||
| 2815 | mbcset->range_ends, is a pointer argument sinse we may | ||
| 2816 | update it. */ | ||
| 2817 | |||
| 2818 | auto inline reg_errcode_t | ||
| 2819 | __attribute ((always_inline)) | ||
| 2820 | build_range_exp (bitset sbcset, re_charset_t *mbcset, | ||
| 2821 | Idx *range_alloc, | ||
| 2822 | bracket_elem_t *start_elem, bracket_elem_t *end_elem) | ||
| 2823 | { | ||
| 2824 | unsigned int ch; | ||
| 2825 | uint32_t start_collseq; | ||
| 2826 | uint32_t end_collseq; | ||
| 2827 | |||
| 2828 | /* Equivalence Classes and Character Classes can't be a range | ||
| 2829 | start/end. */ | ||
| 2830 | if (BE (start_elem->type == EQUIV_CLASS || start_elem->type == CHAR_CLASS | ||
| 2831 | || end_elem->type == EQUIV_CLASS || end_elem->type == CHAR_CLASS, | ||
| 2832 | 0)) | ||
| 2833 | return REG_ERANGE; | ||
| 2834 | |||
| 2835 | start_collseq = lookup_collation_sequence_value (start_elem); | ||
| 2836 | end_collseq = lookup_collation_sequence_value (end_elem); | ||
| 2837 | /* Check start/end collation sequence values. */ | ||
| 2838 | if (BE (start_collseq == UINT_MAX || end_collseq == UINT_MAX, 0)) | ||
| 2839 | return REG_ECOLLATE; | ||
| 2840 | if (BE ((syntax & REG_NO_EMPTY_RANGES) && start_collseq > end_collseq, 0)) | ||
| 2841 | return REG_ERANGE; | ||
| 2842 | |||
| 2843 | /* Got valid collation sequence values, add them as a new entry. | ||
| 2844 | However, if we have no collation elements, and the character set | ||
| 2845 | is single byte, the single byte character set that we | ||
| 2846 | build below suffices. */ | ||
| 2847 | if (nrules > 0 || dfa->mb_cur_max > 1) | ||
| 2848 | { | ||
| 2849 | /* Check the space of the arrays. */ | ||
| 2850 | if (BE (*range_alloc == mbcset->nranges, 0)) | ||
| 2851 | { | ||
| 2852 | /* There is not enough space, need realloc. */ | ||
| 2853 | uint32_t *new_array_start; | ||
| 2854 | uint32_t *new_array_end; | ||
| 2855 | Idx new_nranges; | ||
| 2856 | |||
| 2857 | new_nranges = mbcset->nranges; | ||
| 2858 | new_array_start = re_x2realloc (mbcset->range_starts, uint32_t, | ||
| 2859 | &new_nranges); | ||
| 2860 | new_array_end = re_realloc (mbcset->range_ends, uint32_t, | ||
| 2861 | new_nranges); | ||
| 2862 | |||
| 2863 | if (BE (new_array_start == NULL || new_array_end == NULL, 0)) | ||
| 2864 | return REG_ESPACE; | ||
| 2865 | |||
| 2866 | mbcset->range_starts = new_array_start; | ||
| 2867 | mbcset->range_ends = new_array_end; | ||
| 2868 | *range_alloc = new_nranges; | ||
| 2869 | } | ||
| 2870 | |||
| 2871 | mbcset->range_starts[mbcset->nranges] = start_collseq; | ||
| 2872 | mbcset->range_ends[mbcset->nranges++] = end_collseq; | ||
| 2873 | } | ||
| 2874 | |||
| 2875 | /* Build the table for single byte characters. */ | ||
| 2876 | for (ch = 0; ch < SBC_MAX; ch++) | ||
| 2877 | { | ||
| 2878 | uint32_t ch_collseq; | ||
| 2879 | /* | ||
| 2880 | if (MB_CUR_MAX == 1) | ||
| 2881 | */ | ||
| 2882 | if (nrules == 0) | ||
| 2883 | ch_collseq = collseqmb[ch]; | ||
| 2884 | else | ||
| 2885 | ch_collseq = __collseq_table_lookup (collseqwc, __btowc (ch)); | ||
| 2886 | if (start_collseq <= ch_collseq && ch_collseq <= end_collseq) | ||
| 2887 | bitset_set (sbcset, ch); | ||
| 2888 | } | ||
| 2889 | return REG_NOERROR; | ||
| 2890 | } | ||
| 2891 | |||
| 2892 | /* Local function for parse_bracket_exp used in _LIBC environement. | ||
| 2893 | Build the collating element which is represented by NAME. | ||
| 2894 | The result are written to MBCSET and SBCSET. | ||
| 2895 | COLL_SYM_ALLOC is the allocated size of mbcset->coll_sym, is a | ||
| 2896 | pointer argument sinse we may update it. */ | ||
| 2897 | |||
| 2898 | auto inline reg_errcode_t | ||
| 2899 | __attribute ((always_inline)) | ||
| 2900 | build_collating_symbol (bitset sbcset, re_charset_t *mbcset, | ||
| 2901 | Idx *coll_sym_alloc, const unsigned char *name) | ||
| 2902 | { | ||
| 2903 | int32_t elem, idx; | ||
| 2904 | size_t name_len = strlen ((const char *) name); | ||
| 2905 | if (nrules != 0) | ||
| 2906 | { | ||
| 2907 | elem = seek_collating_symbol_entry (name, name_len); | ||
| 2908 | if (symb_table[2 * elem] != 0) | ||
| 2909 | { | ||
| 2910 | /* We found the entry. */ | ||
| 2911 | idx = symb_table[2 * elem + 1]; | ||
| 2912 | /* Skip the name of collating element name. */ | ||
| 2913 | idx += 1 + extra[idx]; | ||
| 2914 | } | ||
| 2915 | else if (symb_table[2 * elem] == 0 && name_len == 1) | ||
| 2916 | { | ||
| 2917 | /* No valid character, treat it as a normal | ||
| 2918 | character. */ | ||
| 2919 | bitset_set (sbcset, name[0]); | ||
| 2920 | return REG_NOERROR; | ||
| 2921 | } | ||
| 2922 | else | ||
| 2923 | return REG_ECOLLATE; | ||
| 2924 | |||
| 2925 | /* Got valid collation sequence, add it as a new entry. */ | ||
| 2926 | /* Check the space of the arrays. */ | ||
| 2927 | if (BE (*coll_sym_alloc == mbcset->ncoll_syms, 0)) | ||
| 2928 | { | ||
| 2929 | /* Not enough, realloc it. */ | ||
| 2930 | Idx new_coll_sym_alloc = mbcset->ncoll_syms; | ||
| 2931 | /* Use realloc since mbcset->coll_syms is NULL | ||
| 2932 | if *alloc == 0. */ | ||
| 2933 | int32_t *new_coll_syms = re_x2realloc (mbcset->coll_syms, int32_t, | ||
| 2934 | &new_coll_sym_alloc); | ||
| 2935 | if (BE (new_coll_syms == NULL, 0)) | ||
| 2936 | return REG_ESPACE; | ||
| 2937 | mbcset->coll_syms = new_coll_syms; | ||
| 2938 | *coll_sym_alloc = new_coll_sym_alloc; | ||
| 2939 | } | ||
| 2940 | mbcset->coll_syms[mbcset->ncoll_syms++] = idx; | ||
| 2941 | return REG_NOERROR; | ||
| 2942 | } | ||
| 2943 | else | ||
| 2944 | { | ||
| 2945 | if (BE (name_len != 1, 0)) | ||
| 2946 | return REG_ECOLLATE; | ||
| 2947 | else | ||
| 2948 | { | ||
| 2949 | bitset_set (sbcset, name[0]); | ||
| 2950 | return REG_NOERROR; | ||
| 2951 | } | ||
| 2952 | } | ||
| 2953 | } | ||
| 2954 | #endif | ||
| 2955 | |||
| 2956 | re_token_t br_token; | ||
| 2957 | re_bitset_ptr_t sbcset; | ||
| 2958 | #ifdef RE_ENABLE_I18N | ||
| 2959 | re_charset_t *mbcset; | ||
| 2960 | Idx coll_sym_alloc = 0, range_alloc = 0, mbchar_alloc = 0; | ||
| 2961 | Idx equiv_class_alloc = 0, char_class_alloc = 0; | ||
| 2962 | #endif /* not RE_ENABLE_I18N */ | ||
| 2963 | bool non_match = false; | ||
| 2964 | bin_tree_t *work_tree; | ||
| 2965 | int token_len; | ||
| 2966 | bool first_round = true; | ||
| 2967 | #ifdef _LIBC | ||
| 2968 | collseqmb = (const unsigned char *) | ||
| 2969 | _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); | ||
| 2970 | nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
| 2971 | if (nrules) | ||
| 2972 | { | ||
| 2973 | /* | ||
| 2974 | if (MB_CUR_MAX > 1) | ||
| 2975 | */ | ||
| 2976 | collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); | ||
| 2977 | table_size = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_SYMB_HASH_SIZEMB); | ||
| 2978 | symb_table = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
| 2979 | _NL_COLLATE_SYMB_TABLEMB); | ||
| 2980 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
| 2981 | _NL_COLLATE_SYMB_EXTRAMB); | ||
| 2982 | } | ||
| 2983 | #endif | ||
| 2984 | sbcset = re_calloc (bitset_word, BITSET_WORDS); | ||
| 2985 | #ifdef RE_ENABLE_I18N | ||
| 2986 | mbcset = re_calloc (re_charset_t, 1); | ||
| 2987 | #endif /* RE_ENABLE_I18N */ | ||
| 2988 | #ifdef RE_ENABLE_I18N | ||
| 2989 | if (BE (sbcset == NULL || mbcset == NULL, 0)) | ||
| 2990 | #else | ||
| 2991 | if (BE (sbcset == NULL, 0)) | ||
| 2992 | #endif /* RE_ENABLE_I18N */ | ||
| 2993 | { | ||
| 2994 | *err = REG_ESPACE; | ||
| 2995 | return NULL; | ||
| 2996 | } | ||
| 2997 | |||
| 2998 | token_len = peek_token_bracket (token, regexp, syntax); | ||
| 2999 | if (BE (token->type == END_OF_RE, 0)) | ||
| 3000 | { | ||
| 3001 | *err = REG_BADPAT; | ||
| 3002 | goto parse_bracket_exp_free_return; | ||
| 3003 | } | ||
| 3004 | if (token->type == OP_NON_MATCH_LIST) | ||
| 3005 | { | ||
| 3006 | #ifdef RE_ENABLE_I18N | ||
| 3007 | mbcset->non_match = 1; | ||
| 3008 | #endif /* not RE_ENABLE_I18N */ | ||
| 3009 | non_match = true; | ||
| 3010 | if (syntax & REG_HAT_LISTS_NOT_NEWLINE) | ||
| 3011 | bitset_set (sbcset, '\0'); | ||
| 3012 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
| 3013 | token_len = peek_token_bracket (token, regexp, syntax); | ||
| 3014 | if (BE (token->type == END_OF_RE, 0)) | ||
| 3015 | { | ||
| 3016 | *err = REG_BADPAT; | ||
| 3017 | goto parse_bracket_exp_free_return; | ||
| 3018 | } | ||
| 3019 | } | ||
| 3020 | |||
| 3021 | /* We treat the first ']' as a normal character. */ | ||
| 3022 | if (token->type == OP_CLOSE_BRACKET) | ||
| 3023 | token->type = CHARACTER; | ||
| 3024 | |||
| 3025 | while (1) | ||
| 3026 | { | ||
| 3027 | bracket_elem_t start_elem, end_elem; | ||
| 3028 | unsigned char start_name_buf[BRACKET_NAME_BUF_SIZE]; | ||
| 3029 | unsigned char end_name_buf[BRACKET_NAME_BUF_SIZE]; | ||
| 3030 | reg_errcode_t ret; | ||
| 3031 | int token_len2 = 0; | ||
| 3032 | bool is_range_exp = false; | ||
| 3033 | re_token_t token2; | ||
| 3034 | |||
| 3035 | start_elem.opr.name = start_name_buf; | ||
| 3036 | ret = parse_bracket_element (&start_elem, regexp, token, token_len, dfa, | ||
| 3037 | syntax, first_round); | ||
| 3038 | if (BE (ret != REG_NOERROR, 0)) | ||
| 3039 | { | ||
| 3040 | *err = ret; | ||
| 3041 | goto parse_bracket_exp_free_return; | ||
| 3042 | } | ||
| 3043 | first_round = false; | ||
| 3044 | |||
| 3045 | /* Get information about the next token. We need it in any case. */ | ||
| 3046 | token_len = peek_token_bracket (token, regexp, syntax); | ||
| 3047 | |||
| 3048 | /* Do not check for ranges if we know they are not allowed. */ | ||
| 3049 | if (start_elem.type != CHAR_CLASS && start_elem.type != EQUIV_CLASS) | ||
| 3050 | { | ||
| 3051 | if (BE (token->type == END_OF_RE, 0)) | ||
| 3052 | { | ||
| 3053 | *err = REG_EBRACK; | ||
| 3054 | goto parse_bracket_exp_free_return; | ||
| 3055 | } | ||
| 3056 | if (token->type == OP_CHARSET_RANGE) | ||
| 3057 | { | ||
| 3058 | re_string_skip_bytes (regexp, token_len); /* Skip '-'. */ | ||
| 3059 | token_len2 = peek_token_bracket (&token2, regexp, syntax); | ||
| 3060 | if (BE (token2.type == END_OF_RE, 0)) | ||
| 3061 | { | ||
| 3062 | *err = REG_EBRACK; | ||
| 3063 | goto parse_bracket_exp_free_return; | ||
| 3064 | } | ||
| 3065 | if (token2.type == OP_CLOSE_BRACKET) | ||
| 3066 | { | ||
| 3067 | /* We treat the last '-' as a normal character. */ | ||
| 3068 | re_string_skip_bytes (regexp, -token_len); | ||
| 3069 | token->type = CHARACTER; | ||
| 3070 | } | ||
| 3071 | else | ||
| 3072 | is_range_exp = true; | ||
| 3073 | } | ||
| 3074 | } | ||
| 3075 | |||
| 3076 | if (is_range_exp == true) | ||
| 3077 | { | ||
| 3078 | end_elem.opr.name = end_name_buf; | ||
| 3079 | ret = parse_bracket_element (&end_elem, regexp, &token2, token_len2, | ||
| 3080 | dfa, syntax, true); | ||
| 3081 | if (BE (ret != REG_NOERROR, 0)) | ||
| 3082 | { | ||
| 3083 | *err = ret; | ||
| 3084 | goto parse_bracket_exp_free_return; | ||
| 3085 | } | ||
| 3086 | |||
| 3087 | token_len = peek_token_bracket (token, regexp, syntax); | ||
| 3088 | |||
| 3089 | #ifdef _LIBC | ||
| 3090 | *err = build_range_exp (sbcset, mbcset, &range_alloc, | ||
| 3091 | &start_elem, &end_elem); | ||
| 3092 | #else | ||
| 3093 | # ifdef RE_ENABLE_I18N | ||
| 3094 | *err = build_range_exp (sbcset, | ||
| 3095 | dfa->mb_cur_max > 1 ? mbcset : NULL, | ||
| 3096 | &range_alloc, &start_elem, &end_elem); | ||
| 3097 | # else | ||
| 3098 | *err = build_range_exp (sbcset, &start_elem, &end_elem); | ||
| 3099 | # endif | ||
| 3100 | #endif /* RE_ENABLE_I18N */ | ||
| 3101 | if (BE (*err != REG_NOERROR, 0)) | ||
| 3102 | goto parse_bracket_exp_free_return; | ||
| 3103 | } | ||
| 3104 | else | ||
| 3105 | { | ||
| 3106 | switch (start_elem.type) | ||
| 3107 | { | ||
| 3108 | case SB_CHAR: | ||
| 3109 | bitset_set (sbcset, start_elem.opr.ch); | ||
| 3110 | break; | ||
| 3111 | #ifdef RE_ENABLE_I18N | ||
| 3112 | case MB_CHAR: | ||
| 3113 | /* Check whether the array has enough space. */ | ||
| 3114 | if (BE (mbchar_alloc == mbcset->nmbchars, 0)) | ||
| 3115 | { | ||
| 3116 | wchar_t *new_mbchars; | ||
| 3117 | /* Not enough, realloc it. */ | ||
| 3118 | mbchar_alloc = mbcset->nmbchars; | ||
| 3119 | /* Use realloc since array is NULL if *alloc == 0. */ | ||
| 3120 | new_mbchars = re_x2realloc (mbcset->mbchars, wchar_t, | ||
| 3121 | &mbchar_alloc); | ||
| 3122 | if (BE (new_mbchars == NULL, 0)) | ||
| 3123 | goto parse_bracket_exp_espace; | ||
| 3124 | mbcset->mbchars = new_mbchars; | ||
| 3125 | } | ||
| 3126 | mbcset->mbchars[mbcset->nmbchars++] = start_elem.opr.wch; | ||
| 3127 | break; | ||
| 3128 | #endif /* RE_ENABLE_I18N */ | ||
| 3129 | case EQUIV_CLASS: | ||
| 3130 | *err = build_equiv_class (sbcset, | ||
| 3131 | #ifdef RE_ENABLE_I18N | ||
| 3132 | mbcset, &equiv_class_alloc, | ||
| 3133 | #endif /* RE_ENABLE_I18N */ | ||
| 3134 | start_elem.opr.name); | ||
| 3135 | if (BE (*err != REG_NOERROR, 0)) | ||
| 3136 | goto parse_bracket_exp_free_return; | ||
| 3137 | break; | ||
| 3138 | case COLL_SYM: | ||
| 3139 | *err = build_collating_symbol (sbcset, | ||
| 3140 | #ifdef RE_ENABLE_I18N | ||
| 3141 | mbcset, &coll_sym_alloc, | ||
| 3142 | #endif /* RE_ENABLE_I18N */ | ||
| 3143 | start_elem.opr.name); | ||
| 3144 | if (BE (*err != REG_NOERROR, 0)) | ||
| 3145 | goto parse_bracket_exp_free_return; | ||
| 3146 | break; | ||
| 3147 | case CHAR_CLASS: | ||
| 3148 | *err = build_charclass (regexp->trans, sbcset, | ||
| 3149 | #ifdef RE_ENABLE_I18N | ||
| 3150 | mbcset, &char_class_alloc, | ||
| 3151 | #endif /* RE_ENABLE_I18N */ | ||
| 3152 | start_elem.opr.name, syntax); | ||
| 3153 | if (BE (*err != REG_NOERROR, 0)) | ||
| 3154 | goto parse_bracket_exp_free_return; | ||
| 3155 | break; | ||
| 3156 | default: | ||
| 3157 | assert (0); | ||
| 3158 | break; | ||
| 3159 | } | ||
| 3160 | } | ||
| 3161 | if (BE (token->type == END_OF_RE, 0)) | ||
| 3162 | { | ||
| 3163 | *err = REG_EBRACK; | ||
| 3164 | goto parse_bracket_exp_free_return; | ||
| 3165 | } | ||
| 3166 | if (token->type == OP_CLOSE_BRACKET) | ||
| 3167 | break; | ||
| 3168 | } | ||
| 3169 | |||
| 3170 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
| 3171 | |||
| 3172 | /* If it is non-matching list. */ | ||
| 3173 | if (non_match) | ||
| 3174 | bitset_not (sbcset); | ||
| 3175 | |||
| 3176 | #ifdef RE_ENABLE_I18N | ||
| 3177 | /* Ensure only single byte characters are set. */ | ||
| 3178 | if (dfa->mb_cur_max > 1) | ||
| 3179 | bitset_mask (sbcset, dfa->sb_char); | ||
| 3180 | |||
| 3181 | if (mbcset->nmbchars || mbcset->ncoll_syms || mbcset->nequiv_classes | ||
| 3182 | || mbcset->nranges || (dfa->mb_cur_max > 1 && (mbcset->nchar_classes | ||
| 3183 | || mbcset->non_match))) | ||
| 3184 | { | ||
| 3185 | bin_tree_t *mbc_tree; | ||
| 3186 | int sbc_idx; | ||
| 3187 | /* Build a tree for complex bracket. */ | ||
| 3188 | dfa->has_mb_node = 1; | ||
| 3189 | br_token.type = COMPLEX_BRACKET; | ||
| 3190 | br_token.opr.mbcset = mbcset; | ||
| 3191 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
| 3192 | if (BE (mbc_tree == NULL, 0)) | ||
| 3193 | goto parse_bracket_exp_espace; | ||
| 3194 | for (sbc_idx = 0; sbc_idx < BITSET_WORDS; ++sbc_idx) | ||
| 3195 | if (sbcset[sbc_idx]) | ||
| 3196 | break; | ||
| 3197 | /* If there are no bits set in sbcset, there is no point | ||
| 3198 | of having both SIMPLE_BRACKET and COMPLEX_BRACKET. */ | ||
| 3199 | if (sbc_idx < BITSET_WORDS) | ||
| 3200 | { | ||
| 3201 | /* Build a tree for simple bracket. */ | ||
| 3202 | br_token.type = SIMPLE_BRACKET; | ||
| 3203 | br_token.opr.sbcset = sbcset; | ||
| 3204 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
| 3205 | if (BE (work_tree == NULL, 0)) | ||
| 3206 | goto parse_bracket_exp_espace; | ||
| 3207 | |||
| 3208 | /* Then join them by ALT node. */ | ||
| 3209 | work_tree = create_tree (dfa, work_tree, mbc_tree, OP_ALT); | ||
| 3210 | if (BE (work_tree == NULL, 0)) | ||
| 3211 | goto parse_bracket_exp_espace; | ||
| 3212 | } | ||
| 3213 | else | ||
| 3214 | { | ||
| 3215 | re_free (sbcset); | ||
| 3216 | work_tree = mbc_tree; | ||
| 3217 | } | ||
| 3218 | } | ||
| 3219 | else | ||
| 3220 | #endif /* not RE_ENABLE_I18N */ | ||
| 3221 | { | ||
| 3222 | #ifdef RE_ENABLE_I18N | ||
| 3223 | free_charset (mbcset); | ||
| 3224 | #endif | ||
| 3225 | /* Build a tree for simple bracket. */ | ||
| 3226 | br_token.type = SIMPLE_BRACKET; | ||
| 3227 | br_token.opr.sbcset = sbcset; | ||
| 3228 | work_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
| 3229 | if (BE (work_tree == NULL, 0)) | ||
| 3230 | goto parse_bracket_exp_espace; | ||
| 3231 | } | ||
| 3232 | return work_tree; | ||
| 3233 | |||
| 3234 | parse_bracket_exp_espace: | ||
| 3235 | *err = REG_ESPACE; | ||
| 3236 | parse_bracket_exp_free_return: | ||
| 3237 | re_free (sbcset); | ||
| 3238 | #ifdef RE_ENABLE_I18N | ||
| 3239 | free_charset (mbcset); | ||
| 3240 | #endif /* RE_ENABLE_I18N */ | ||
| 3241 | return NULL; | ||
| 3242 | } | ||
| 3243 | |||
| 3244 | /* Parse an element in the bracket expression. */ | ||
| 3245 | |||
| 3246 | static reg_errcode_t | ||
| 3247 | parse_bracket_element (bracket_elem_t *elem, re_string_t *regexp, | ||
| 3248 | re_token_t *token, int token_len, re_dfa_t *dfa, | ||
| 3249 | reg_syntax_t syntax, bool accept_hyphen) | ||
| 3250 | { | ||
| 3251 | #ifdef RE_ENABLE_I18N | ||
| 3252 | int cur_char_size; | ||
| 3253 | cur_char_size = re_string_char_size_at (regexp, re_string_cur_idx (regexp)); | ||
| 3254 | if (cur_char_size > 1) | ||
| 3255 | { | ||
| 3256 | elem->type = MB_CHAR; | ||
| 3257 | elem->opr.wch = re_string_wchar_at (regexp, re_string_cur_idx (regexp)); | ||
| 3258 | re_string_skip_bytes (regexp, cur_char_size); | ||
| 3259 | return REG_NOERROR; | ||
| 3260 | } | ||
| 3261 | #endif /* RE_ENABLE_I18N */ | ||
| 3262 | re_string_skip_bytes (regexp, token_len); /* Skip a token. */ | ||
| 3263 | if (token->type == OP_OPEN_COLL_ELEM || token->type == OP_OPEN_CHAR_CLASS | ||
| 3264 | || token->type == OP_OPEN_EQUIV_CLASS) | ||
| 3265 | return parse_bracket_symbol (elem, regexp, token); | ||
| 3266 | if (BE (token->type == OP_CHARSET_RANGE, 0) && !accept_hyphen) | ||
| 3267 | { | ||
| 3268 | /* A '-' must only appear as anything but a range indicator before | ||
| 3269 | the closing bracket. Everything else is an error. */ | ||
| 3270 | re_token_t token2; | ||
| 3271 | (void) peek_token_bracket (&token2, regexp, syntax); | ||
| 3272 | if (token2.type != OP_CLOSE_BRACKET) | ||
| 3273 | /* The actual error value is not standardized since this whole | ||
| 3274 | case is undefined. But ERANGE makes good sense. */ | ||
| 3275 | return REG_ERANGE; | ||
| 3276 | } | ||
| 3277 | elem->type = SB_CHAR; | ||
| 3278 | elem->opr.ch = token->opr.c; | ||
| 3279 | return REG_NOERROR; | ||
| 3280 | } | ||
| 3281 | |||
| 3282 | /* Parse a bracket symbol in the bracket expression. Bracket symbols are | ||
| 3283 | such as [:<character_class>:], [.<collating_element>.], and | ||
| 3284 | [=<equivalent_class>=]. */ | ||
| 3285 | |||
| 3286 | static reg_errcode_t | ||
| 3287 | parse_bracket_symbol (bracket_elem_t *elem, re_string_t *regexp, | ||
| 3288 | re_token_t *token) | ||
| 3289 | { | ||
| 3290 | unsigned char ch, delim = token->opr.c; | ||
| 3291 | int i = 0; | ||
| 3292 | if (re_string_eoi(regexp)) | ||
| 3293 | return REG_EBRACK; | ||
| 3294 | for (;; ++i) | ||
| 3295 | { | ||
| 3296 | if (i >= BRACKET_NAME_BUF_SIZE) | ||
| 3297 | return REG_EBRACK; | ||
| 3298 | if (token->type == OP_OPEN_CHAR_CLASS) | ||
| 3299 | ch = re_string_fetch_byte_case (regexp); | ||
| 3300 | else | ||
| 3301 | ch = re_string_fetch_byte (regexp); | ||
| 3302 | if (re_string_eoi(regexp)) | ||
| 3303 | return REG_EBRACK; | ||
| 3304 | if (ch == delim && re_string_peek_byte (regexp, 0) == ']') | ||
| 3305 | break; | ||
| 3306 | elem->opr.name[i] = ch; | ||
| 3307 | } | ||
| 3308 | re_string_skip_bytes (regexp, 1); | ||
| 3309 | elem->opr.name[i] = '\0'; | ||
| 3310 | switch (token->type) | ||
| 3311 | { | ||
| 3312 | case OP_OPEN_COLL_ELEM: | ||
| 3313 | elem->type = COLL_SYM; | ||
| 3314 | break; | ||
| 3315 | case OP_OPEN_EQUIV_CLASS: | ||
| 3316 | elem->type = EQUIV_CLASS; | ||
| 3317 | break; | ||
| 3318 | case OP_OPEN_CHAR_CLASS: | ||
| 3319 | elem->type = CHAR_CLASS; | ||
| 3320 | break; | ||
| 3321 | default: | ||
| 3322 | break; | ||
| 3323 | } | ||
| 3324 | return REG_NOERROR; | ||
| 3325 | } | ||
| 3326 | |||
| 3327 | /* Helper function for parse_bracket_exp. | ||
| 3328 | Build the equivalence class which is represented by NAME. | ||
| 3329 | The result are written to MBCSET and SBCSET. | ||
| 3330 | EQUIV_CLASS_ALLOC is the allocated size of mbcset->equiv_classes, | ||
| 3331 | is a pointer argument sinse we may update it. */ | ||
| 3332 | |||
| 3333 | static reg_errcode_t | ||
| 3334 | build_equiv_class (bitset sbcset, | ||
| 3335 | #ifdef RE_ENABLE_I18N | ||
| 3336 | re_charset_t *mbcset, Idx *equiv_class_alloc, | ||
| 3337 | #endif | ||
| 3338 | const unsigned char *name) | ||
| 3339 | { | ||
| 3340 | #if defined _LIBC | ||
| 3341 | uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); | ||
| 3342 | if (nrules != 0) | ||
| 3343 | { | ||
| 3344 | const int32_t *table, *indirect; | ||
| 3345 | const unsigned char *weights, *extra, *cp; | ||
| 3346 | unsigned char char_buf[2]; | ||
| 3347 | int32_t idx1, idx2; | ||
| 3348 | unsigned int ch; | ||
| 3349 | size_t len; | ||
| 3350 | /* This #include defines a local function! */ | ||
| 3351 | # include <locale/weight.h> | ||
| 3352 | /* Calculate the index for equivalence class. */ | ||
| 3353 | cp = name; | ||
| 3354 | table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); | ||
| 3355 | weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
| 3356 | _NL_COLLATE_WEIGHTMB); | ||
| 3357 | extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, | ||
| 3358 | _NL_COLLATE_EXTRAMB); | ||
| 3359 | indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, | ||
| 3360 | _NL_COLLATE_INDIRECTMB); | ||
| 3361 | idx1 = findidx (&cp); | ||
| 3362 | if (BE (idx1 == 0 || cp < name + strlen ((const char *) name), 0)) | ||
| 3363 | /* This isn't a valid character. */ | ||
| 3364 | return REG_ECOLLATE; | ||
| 3365 | |||
| 3366 | /* Build single byte matcing table for this equivalence class. */ | ||
| 3367 | char_buf[1] = (unsigned char) '\0'; | ||
| 3368 | len = weights[idx1]; | ||
| 3369 | for (ch = 0; ch < SBC_MAX; ++ch) | ||
| 3370 | { | ||
| 3371 | char_buf[0] = ch; | ||
| 3372 | cp = char_buf; | ||
| 3373 | idx2 = findidx (&cp); | ||
| 3374 | /* | ||
| 3375 | idx2 = table[ch]; | ||
| 3376 | */ | ||
| 3377 | if (idx2 == 0) | ||
| 3378 | /* This isn't a valid character. */ | ||
| 3379 | continue; | ||
| 3380 | if (len == weights[idx2]) | ||
| 3381 | { | ||
| 3382 | int cnt = 0; | ||
| 3383 | while (cnt <= len && | ||
| 3384 | weights[idx1 + 1 + cnt] == weights[idx2 + 1 + cnt]) | ||
| 3385 | ++cnt; | ||
| 3386 | |||
| 3387 | if (cnt > len) | ||
| 3388 | bitset_set (sbcset, ch); | ||
| 3389 | } | ||
| 3390 | } | ||
| 3391 | /* Check whether the array has enough space. */ | ||
| 3392 | if (BE (*equiv_class_alloc == mbcset->nequiv_classes, 0)) | ||
| 3393 | { | ||
| 3394 | /* Not enough, realloc it. */ | ||
| 3395 | Idx new_equiv_class_alloc = mbcset->nequiv_classes; | ||
| 3396 | /* Use realloc since the array is NULL if *alloc == 0. */ | ||
| 3397 | int32_t *new_equiv_classes = re_x2realloc (mbcset->equiv_classes, | ||
| 3398 | int32_t, | ||
| 3399 | &new_equiv_class_alloc); | ||
| 3400 | if (BE (new_equiv_classes == NULL, 0)) | ||
| 3401 | return REG_ESPACE; | ||
| 3402 | mbcset->equiv_classes = new_equiv_classes; | ||
| 3403 | *equiv_class_alloc = new_equiv_class_alloc; | ||
| 3404 | } | ||
| 3405 | mbcset->equiv_classes[mbcset->nequiv_classes++] = idx1; | ||
| 3406 | } | ||
| 3407 | else | ||
| 3408 | #endif /* _LIBC */ | ||
| 3409 | { | ||
| 3410 | if (BE (strlen ((const char *) name) != 1, 0)) | ||
| 3411 | return REG_ECOLLATE; | ||
| 3412 | bitset_set (sbcset, *name); | ||
| 3413 | } | ||
| 3414 | return REG_NOERROR; | ||
| 3415 | } | ||
| 3416 | |||
| 3417 | /* Helper function for parse_bracket_exp. | ||
| 3418 | Build the character class which is represented by NAME. | ||
| 3419 | The result are written to MBCSET and SBCSET. | ||
| 3420 | CHAR_CLASS_ALLOC is the allocated size of mbcset->char_classes, | ||
| 3421 | is a pointer argument sinse we may update it. */ | ||
| 3422 | |||
| 3423 | static reg_errcode_t | ||
| 3424 | build_charclass (unsigned REG_TRANSLATE_TYPE trans, bitset sbcset, | ||
| 3425 | #ifdef RE_ENABLE_I18N | ||
| 3426 | re_charset_t *mbcset, Idx *char_class_alloc, | ||
| 3427 | #endif | ||
| 3428 | const unsigned char *class_name, reg_syntax_t syntax) | ||
| 3429 | { | ||
| 3430 | int i; | ||
| 3431 | const char *name = (const char *) class_name; | ||
| 3432 | |||
| 3433 | /* In case of REG_ICASE "upper" and "lower" match the both of | ||
| 3434 | upper and lower cases. */ | ||
| 3435 | if ((syntax & REG_IGNORE_CASE) | ||
| 3436 | && (strcmp (name, "upper") == 0 || strcmp (name, "lower") == 0)) | ||
| 3437 | name = "alpha"; | ||
| 3438 | |||
| 3439 | #ifdef RE_ENABLE_I18N | ||
| 3440 | /* Check the space of the arrays. */ | ||
| 3441 | if (BE (*char_class_alloc == mbcset->nchar_classes, 0)) | ||
| 3442 | { | ||
| 3443 | /* Not enough, realloc it. */ | ||
| 3444 | Idx new_char_class_alloc = mbcset->nchar_classes; | ||
| 3445 | /* Use realloc since array is NULL if *alloc == 0. */ | ||
| 3446 | wctype_t *new_char_classes = re_x2realloc (mbcset->char_classes, wctype_t, | ||
| 3447 | &new_char_class_alloc); | ||
| 3448 | if (BE (new_char_classes == NULL, 0)) | ||
| 3449 | return REG_ESPACE; | ||
| 3450 | mbcset->char_classes = new_char_classes; | ||
| 3451 | *char_class_alloc = new_char_class_alloc; | ||
| 3452 | } | ||
| 3453 | mbcset->char_classes[mbcset->nchar_classes++] = __wctype (name); | ||
| 3454 | #endif /* RE_ENABLE_I18N */ | ||
| 3455 | |||
| 3456 | #define BUILD_CHARCLASS_LOOP(ctype_func) \ | ||
| 3457 | for (i = 0; i < SBC_MAX; ++i) \ | ||
| 3458 | { \ | ||
| 3459 | if (ctype_func (i)) \ | ||
| 3460 | { \ | ||
| 3461 | int ch = trans ? trans[i] : i; \ | ||
| 3462 | bitset_set (sbcset, ch); \ | ||
| 3463 | } \ | ||
| 3464 | } | ||
| 3465 | |||
| 3466 | if (strcmp (name, "alnum") == 0) | ||
| 3467 | BUILD_CHARCLASS_LOOP (isalnum) | ||
| 3468 | else if (strcmp (name, "cntrl") == 0) | ||
| 3469 | BUILD_CHARCLASS_LOOP (iscntrl) | ||
| 3470 | else if (strcmp (name, "lower") == 0) | ||
| 3471 | BUILD_CHARCLASS_LOOP (islower) | ||
| 3472 | else if (strcmp (name, "space") == 0) | ||
| 3473 | BUILD_CHARCLASS_LOOP (isspace) | ||
| 3474 | else if (strcmp (name, "alpha") == 0) | ||
| 3475 | BUILD_CHARCLASS_LOOP (isalpha) | ||
| 3476 | else if (strcmp (name, "digit") == 0) | ||
| 3477 | BUILD_CHARCLASS_LOOP (isdigit) | ||
| 3478 | else if (strcmp (name, "print") == 0) | ||
| 3479 | BUILD_CHARCLASS_LOOP (isprint) | ||
| 3480 | else if (strcmp (name, "upper") == 0) | ||
| 3481 | BUILD_CHARCLASS_LOOP (isupper) | ||
| 3482 | else if (strcmp (name, "blank") == 0) | ||
| 3483 | BUILD_CHARCLASS_LOOP (isblank) | ||
| 3484 | else if (strcmp (name, "graph") == 0) | ||
| 3485 | BUILD_CHARCLASS_LOOP (isgraph) | ||
| 3486 | else if (strcmp (name, "punct") == 0) | ||
| 3487 | BUILD_CHARCLASS_LOOP (ispunct) | ||
| 3488 | else if (strcmp (name, "xdigit") == 0) | ||
| 3489 | BUILD_CHARCLASS_LOOP (isxdigit) | ||
| 3490 | else | ||
| 3491 | return REG_ECTYPE; | ||
| 3492 | |||
| 3493 | return REG_NOERROR; | ||
| 3494 | } | ||
| 3495 | |||
| 3496 | static bin_tree_t * | ||
| 3497 | build_charclass_op (re_dfa_t *dfa, unsigned REG_TRANSLATE_TYPE trans, | ||
| 3498 | const unsigned char *class_name, | ||
| 3499 | const unsigned char *extra, | ||
| 3500 | bool non_match, reg_errcode_t *err) | ||
| 3501 | { | ||
| 3502 | re_bitset_ptr_t sbcset; | ||
| 3503 | #ifdef RE_ENABLE_I18N | ||
| 3504 | re_charset_t *mbcset; | ||
| 3505 | Idx alloc = 0; | ||
| 3506 | #endif /* not RE_ENABLE_I18N */ | ||
| 3507 | reg_errcode_t ret; | ||
| 3508 | re_token_t br_token; | ||
| 3509 | bin_tree_t *tree; | ||
| 3510 | |||
| 3511 | sbcset = re_calloc (bitset_word, BITSET_WORDS); | ||
| 3512 | #ifdef RE_ENABLE_I18N | ||
| 3513 | mbcset = re_calloc (re_charset_t, 1); | ||
| 3514 | #endif /* RE_ENABLE_I18N */ | ||
| 3515 | |||
| 3516 | #ifdef RE_ENABLE_I18N | ||
| 3517 | if (BE (sbcset == NULL || mbcset == NULL, 0)) | ||
| 3518 | #else /* not RE_ENABLE_I18N */ | ||
| 3519 | if (BE (sbcset == NULL, 0)) | ||
| 3520 | #endif /* not RE_ENABLE_I18N */ | ||
| 3521 | { | ||
| 3522 | *err = REG_ESPACE; | ||
| 3523 | return NULL; | ||
| 3524 | } | ||
| 3525 | |||
| 3526 | if (non_match) | ||
| 3527 | { | ||
| 3528 | #ifdef RE_ENABLE_I18N | ||
| 3529 | /* | ||
| 3530 | if (syntax & REG_HAT_LISTS_NOT_NEWLINE) | ||
| 3531 | bitset_set(cset->sbcset, '\0'); | ||
| 3532 | */ | ||
| 3533 | mbcset->non_match = 1; | ||
| 3534 | #endif /* not RE_ENABLE_I18N */ | ||
| 3535 | } | ||
| 3536 | |||
| 3537 | /* We don't care the syntax in this case. */ | ||
| 3538 | ret = build_charclass (trans, sbcset, | ||
| 3539 | #ifdef RE_ENABLE_I18N | ||
| 3540 | mbcset, &alloc, | ||
| 3541 | #endif /* RE_ENABLE_I18N */ | ||
| 3542 | class_name, 0); | ||
| 3543 | |||
| 3544 | if (BE (ret != REG_NOERROR, 0)) | ||
| 3545 | { | ||
| 3546 | re_free (sbcset); | ||
| 3547 | #ifdef RE_ENABLE_I18N | ||
| 3548 | free_charset (mbcset); | ||
| 3549 | #endif /* RE_ENABLE_I18N */ | ||
| 3550 | *err = ret; | ||
| 3551 | return NULL; | ||
| 3552 | } | ||
| 3553 | /* \w match '_' also. */ | ||
| 3554 | for (; *extra; extra++) | ||
| 3555 | bitset_set (sbcset, *extra); | ||
| 3556 | |||
| 3557 | /* If it is non-matching list. */ | ||
| 3558 | if (non_match) | ||
| 3559 | bitset_not (sbcset); | ||
| 3560 | |||
| 3561 | #ifdef RE_ENABLE_I18N | ||
| 3562 | /* Ensure only single byte characters are set. */ | ||
| 3563 | if (dfa->mb_cur_max > 1) | ||
| 3564 | bitset_mask (sbcset, dfa->sb_char); | ||
| 3565 | #endif | ||
| 3566 | |||
| 3567 | /* Build a tree for simple bracket. */ | ||
| 3568 | br_token.type = SIMPLE_BRACKET; | ||
| 3569 | br_token.opr.sbcset = sbcset; | ||
| 3570 | tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
| 3571 | if (BE (tree == NULL, 0)) | ||
| 3572 | goto build_word_op_espace; | ||
| 3573 | |||
| 3574 | #ifdef RE_ENABLE_I18N | ||
| 3575 | if (dfa->mb_cur_max > 1) | ||
| 3576 | { | ||
| 3577 | bin_tree_t *mbc_tree; | ||
| 3578 | /* Build a tree for complex bracket. */ | ||
| 3579 | br_token.type = COMPLEX_BRACKET; | ||
| 3580 | br_token.opr.mbcset = mbcset; | ||
| 3581 | dfa->has_mb_node = 1; | ||
| 3582 | mbc_tree = create_token_tree (dfa, NULL, NULL, &br_token); | ||
| 3583 | if (BE (mbc_tree == NULL, 0)) | ||
| 3584 | goto build_word_op_espace; | ||
| 3585 | /* Then join them by ALT node. */ | ||
| 3586 | tree = create_tree (dfa, tree, mbc_tree, OP_ALT); | ||
| 3587 | if (BE (mbc_tree != NULL, 1)) | ||
| 3588 | return tree; | ||
| 3589 | } | ||
| 3590 | else | ||
| 3591 | { | ||
| 3592 | free_charset (mbcset); | ||
| 3593 | return tree; | ||
| 3594 | } | ||
| 3595 | #else /* not RE_ENABLE_I18N */ | ||
| 3596 | return tree; | ||
| 3597 | #endif /* not RE_ENABLE_I18N */ | ||
| 3598 | |||
| 3599 | build_word_op_espace: | ||
| 3600 | re_free (sbcset); | ||
| 3601 | #ifdef RE_ENABLE_I18N | ||
| 3602 | free_charset (mbcset); | ||
| 3603 | #endif /* RE_ENABLE_I18N */ | ||
| 3604 | *err = REG_ESPACE; | ||
| 3605 | return NULL; | ||
| 3606 | } | ||
| 3607 | |||
| 3608 | /* This is intended for the expressions like "a{1,3}". | ||
| 3609 | Fetch a number from `input', and return the number. | ||
| 3610 | Return REG_MISSING if the number field is empty like "{,1}". | ||
| 3611 | Return REG_ERROR if an error occurred. */ | ||
| 3612 | |||
| 3613 | static Idx | ||
| 3614 | fetch_number (re_string_t *input, re_token_t *token, reg_syntax_t syntax) | ||
| 3615 | { | ||
| 3616 | Idx num = REG_MISSING; | ||
| 3617 | unsigned char c; | ||
| 3618 | while (1) | ||
| 3619 | { | ||
| 3620 | fetch_token (token, input, syntax); | ||
| 3621 | c = token->opr.c; | ||
| 3622 | if (BE (token->type == END_OF_RE, 0)) | ||
| 3623 | return REG_ERROR; | ||
| 3624 | if (token->type == OP_CLOSE_DUP_NUM || c == ',') | ||
| 3625 | break; | ||
| 3626 | num = ((token->type != CHARACTER || c < '0' || '9' < c | ||
| 3627 | || num == REG_ERROR) | ||
| 3628 | ? REG_ERROR | ||
| 3629 | : ((num == REG_MISSING) ? c - '0' : num * 10 + c - '0')); | ||
| 3630 | num = (num > REG_DUP_MAX) ? REG_ERROR : num; | ||
| 3631 | } | ||
| 3632 | return num; | ||
| 3633 | } | ||
| 3634 | |||
| 3635 | #ifdef RE_ENABLE_I18N | ||
| 3636 | static void | ||
| 3637 | free_charset (re_charset_t *cset) | ||
| 3638 | { | ||
| 3639 | re_free (cset->mbchars); | ||
| 3640 | # ifdef _LIBC | ||
| 3641 | re_free (cset->coll_syms); | ||
| 3642 | re_free (cset->equiv_classes); | ||
| 3643 | re_free (cset->range_starts); | ||
| 3644 | re_free (cset->range_ends); | ||
| 3645 | # endif | ||
| 3646 | re_free (cset->char_classes); | ||
| 3647 | re_free (cset); | ||
| 3648 | } | ||
| 3649 | #endif /* RE_ENABLE_I18N */ | ||
| 3650 | |||
| 3651 | /* Functions for binary tree operation. */ | ||
| 3652 | |||
| 3653 | /* Create a tree node. */ | ||
| 3654 | |||
| 3655 | static bin_tree_t * | ||
| 3656 | create_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | ||
| 3657 | re_token_type_t type) | ||
| 3658 | { | ||
| 3659 | re_token_t t; | ||
| 3660 | t.type = type; | ||
| 3661 | return create_token_tree (dfa, left, right, &t); | ||
| 3662 | } | ||
| 3663 | |||
| 3664 | static bin_tree_t * | ||
| 3665 | create_token_tree (re_dfa_t *dfa, bin_tree_t *left, bin_tree_t *right, | ||
| 3666 | const re_token_t *token) | ||
| 3667 | { | ||
| 3668 | bin_tree_t *tree; | ||
| 3669 | if (BE (dfa->str_tree_storage_idx == BIN_TREE_STORAGE_SIZE, 0)) | ||
| 3670 | { | ||
| 3671 | bin_tree_storage_t *storage = re_malloc (bin_tree_storage_t, 1); | ||
| 3672 | |||
| 3673 | if (storage == NULL) | ||
| 3674 | return NULL; | ||
| 3675 | storage->next = dfa->str_tree_storage; | ||
| 3676 | dfa->str_tree_storage = storage; | ||
| 3677 | dfa->str_tree_storage_idx = 0; | ||
| 3678 | } | ||
| 3679 | tree = &dfa->str_tree_storage->data[dfa->str_tree_storage_idx++]; | ||
| 3680 | |||
| 3681 | tree->parent = NULL; | ||
| 3682 | tree->left = left; | ||
| 3683 | tree->right = right; | ||
| 3684 | tree->token = *token; | ||
| 3685 | tree->token.duplicated = 0; | ||
| 3686 | tree->token.opt_subexp = 0; | ||
| 3687 | tree->first = NULL; | ||
| 3688 | tree->next = NULL; | ||
| 3689 | tree->node_idx = REG_MISSING; | ||
| 3690 | |||
| 3691 | if (left != NULL) | ||
| 3692 | left->parent = tree; | ||
| 3693 | if (right != NULL) | ||
| 3694 | right->parent = tree; | ||
| 3695 | return tree; | ||
| 3696 | } | ||
| 3697 | |||
| 3698 | /* Mark the tree SRC as an optional subexpression. | ||
| 3699 | To be called from preorder or postorder. */ | ||
| 3700 | |||
| 3701 | static reg_errcode_t | ||
| 3702 | mark_opt_subexp (void *extra, bin_tree_t *node) | ||
| 3703 | { | ||
| 3704 | Idx idx = (Idx) (long) extra; | ||
| 3705 | if (node->token.type == SUBEXP && node->token.opr.idx == idx) | ||
| 3706 | node->token.opt_subexp = 1; | ||
| 3707 | |||
| 3708 | return REG_NOERROR; | ||
| 3709 | } | ||
| 3710 | |||
| 3711 | /* Free the allocated memory inside NODE. */ | ||
| 3712 | |||
| 3713 | static void | ||
| 3714 | free_token (re_token_t *node) | ||
| 3715 | { | ||
| 3716 | #ifdef RE_ENABLE_I18N | ||
| 3717 | if (node->type == COMPLEX_BRACKET && node->duplicated == 0) | ||
| 3718 | free_charset (node->opr.mbcset); | ||
| 3719 | else | ||
| 3720 | #endif /* RE_ENABLE_I18N */ | ||
| 3721 | if (node->type == SIMPLE_BRACKET && node->duplicated == 0) | ||
| 3722 | re_free (node->opr.sbcset); | ||
| 3723 | } | ||
| 3724 | |||
| 3725 | /* Worker function for tree walking. Free the allocated memory inside NODE | ||
| 3726 | and its children. */ | ||
| 3727 | |||
| 3728 | static reg_errcode_t | ||
| 3729 | free_tree (void *extra, bin_tree_t *node) | ||
| 3730 | { | ||
| 3731 | free_token (&node->token); | ||
| 3732 | return REG_NOERROR; | ||
| 3733 | } | ||
| 3734 | |||
| 3735 | |||
| 3736 | /* Duplicate the node SRC, and return new node. This is a preorder | ||
| 3737 | visit similar to the one implemented by the generic visitor, but | ||
| 3738 | we need more infrastructure to maintain two parallel trees --- so, | ||
| 3739 | it's easier to duplicate. */ | ||
| 3740 | |||
| 3741 | static bin_tree_t * | ||
| 3742 | duplicate_tree (const bin_tree_t *root, re_dfa_t *dfa) | ||
| 3743 | { | ||
| 3744 | const bin_tree_t *node; | ||
| 3745 | bin_tree_t *dup_root; | ||
| 3746 | bin_tree_t **p_new = &dup_root, *dup_node = root->parent; | ||
| 3747 | |||
| 3748 | for (node = root; ; ) | ||
| 3749 | { | ||
| 3750 | /* Create a new tree and link it back to the current parent. */ | ||
| 3751 | *p_new = create_token_tree (dfa, NULL, NULL, &node->token); | ||
| 3752 | if (*p_new == NULL) | ||
| 3753 | return NULL; | ||
| 3754 | (*p_new)->parent = dup_node; | ||
| 3755 | (*p_new)->token.duplicated = 1; | ||
| 3756 | dup_node = *p_new; | ||
| 3757 | |||
| 3758 | /* Go to the left node, or up and to the right. */ | ||
| 3759 | if (node->left) | ||
| 3760 | { | ||
| 3761 | node = node->left; | ||
| 3762 | p_new = &dup_node->left; | ||
| 3763 | } | ||
| 3764 | else | ||
| 3765 | { | ||
| 3766 | const bin_tree_t *prev = NULL; | ||
| 3767 | while (node->right == prev || node->right == NULL) | ||
| 3768 | { | ||
| 3769 | prev = node; | ||
| 3770 | node = node->parent; | ||
| 3771 | dup_node = dup_node->parent; | ||
| 3772 | if (!node) | ||
| 3773 | return dup_root; | ||
| 3774 | } | ||
| 3775 | node = node->right; | ||
| 3776 | p_new = &dup_node->right; | ||
| 3777 | } | ||
| 3778 | } | ||
| 3779 | } | ||
