diff options
| author | Lorenz Kästle <lorenz.kaestle@netways.de> | 2023-03-09 11:03:48 +0100 |
|---|---|---|
| committer | Lorenz Kästle <lorenz.kaestle@netways.de> | 2023-03-09 11:03:48 +0100 |
| commit | d0edb72a0c9bc1a28197ab4566928f7ee63a6d43 (patch) | |
| tree | 6d524fb16d2dd1aa9f2d98529ef1de7a39f52700 /gl/sha1.c | |
| parent | 9fdc82f0543c6e2891c7079f70297f92e8ef4619 (diff) | |
| parent | 269718094177fb8a7e3d3005d1310495009fe8c4 (diff) | |
| download | monitoring-plugins-d0edb72.tar.gz | |
Merge branch 'master' into RincewindsHat-patch-1
Diffstat (limited to 'gl/sha1.c')
| -rw-r--r-- | gl/sha1.c | 426 |
1 files changed, 0 insertions, 426 deletions
diff --git a/gl/sha1.c b/gl/sha1.c deleted file mode 100644 index 778389af..00000000 --- a/gl/sha1.c +++ /dev/null | |||
| @@ -1,426 +0,0 @@ | |||
| 1 | /* sha1.c - Functions to compute SHA1 message digest of files or | ||
| 2 | memory blocks according to the NIST specification FIPS-180-1. | ||
| 3 | |||
| 4 | Copyright (C) 2000-2001, 2003-2006, 2008-2013 Free Software Foundation, Inc. | ||
| 5 | |||
| 6 | This program is free software; you can redistribute it and/or modify it | ||
| 7 | under the terms of the GNU General Public License as published by the | ||
| 8 | Free Software Foundation; either version 3, or (at your option) any | ||
| 9 | later version. | ||
| 10 | |||
| 11 | This program is distributed in the hope that it will be useful, | ||
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| 14 | GNU General Public License for more details. | ||
| 15 | |||
| 16 | You should have received a copy of the GNU General Public License | ||
| 17 | along with this program; if not, see <http://www.gnu.org/licenses/>. */ | ||
| 18 | |||
| 19 | /* Written by Scott G. Miller | ||
| 20 | Credits: | ||
| 21 | Robert Klep <robert@ilse.nl> -- Expansion function fix | ||
| 22 | */ | ||
| 23 | |||
| 24 | #include <config.h> | ||
| 25 | |||
| 26 | #include "sha1.h" | ||
| 27 | |||
| 28 | #include <stdalign.h> | ||
| 29 | #include <stdint.h> | ||
| 30 | #include <stdlib.h> | ||
| 31 | #include <string.h> | ||
| 32 | |||
| 33 | #if USE_UNLOCKED_IO | ||
| 34 | # include "unlocked-io.h" | ||
| 35 | #endif | ||
| 36 | |||
| 37 | #ifdef WORDS_BIGENDIAN | ||
| 38 | # define SWAP(n) (n) | ||
| 39 | #else | ||
| 40 | # define SWAP(n) \ | ||
| 41 | (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24)) | ||
| 42 | #endif | ||
| 43 | |||
| 44 | #define BLOCKSIZE 32768 | ||
| 45 | #if BLOCKSIZE % 64 != 0 | ||
| 46 | # error "invalid BLOCKSIZE" | ||
| 47 | #endif | ||
| 48 | |||
| 49 | /* This array contains the bytes used to pad the buffer to the next | ||
| 50 | 64-byte boundary. (RFC 1321, 3.1: Step 1) */ | ||
| 51 | static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ }; | ||
| 52 | |||
| 53 | |||
| 54 | /* Take a pointer to a 160 bit block of data (five 32 bit ints) and | ||
| 55 | initialize it to the start constants of the SHA1 algorithm. This | ||
| 56 | must be called before using hash in the call to sha1_hash. */ | ||
| 57 | void | ||
| 58 | sha1_init_ctx (struct sha1_ctx *ctx) | ||
| 59 | { | ||
| 60 | ctx->A = 0x67452301; | ||
| 61 | ctx->B = 0xefcdab89; | ||
| 62 | ctx->C = 0x98badcfe; | ||
| 63 | ctx->D = 0x10325476; | ||
| 64 | ctx->E = 0xc3d2e1f0; | ||
| 65 | |||
| 66 | ctx->total[0] = ctx->total[1] = 0; | ||
| 67 | ctx->buflen = 0; | ||
| 68 | } | ||
| 69 | |||
| 70 | /* Copy the 4 byte value from v into the memory location pointed to by *cp, | ||
| 71 | If your architecture allows unaligned access this is equivalent to | ||
| 72 | * (uint32_t *) cp = v */ | ||
| 73 | static void | ||
| 74 | set_uint32 (char *cp, uint32_t v) | ||
| 75 | { | ||
| 76 | memcpy (cp, &v, sizeof v); | ||
| 77 | } | ||
| 78 | |||
| 79 | /* Put result from CTX in first 20 bytes following RESBUF. The result | ||
| 80 | must be in little endian byte order. */ | ||
| 81 | void * | ||
| 82 | sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf) | ||
| 83 | { | ||
| 84 | char *r = resbuf; | ||
| 85 | set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A)); | ||
| 86 | set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B)); | ||
| 87 | set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C)); | ||
| 88 | set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D)); | ||
| 89 | set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E)); | ||
| 90 | |||
| 91 | return resbuf; | ||
| 92 | } | ||
| 93 | |||
| 94 | /* Process the remaining bytes in the internal buffer and the usual | ||
| 95 | prolog according to the standard and write the result to RESBUF. */ | ||
| 96 | void * | ||
| 97 | sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf) | ||
| 98 | { | ||
| 99 | /* Take yet unprocessed bytes into account. */ | ||
| 100 | uint32_t bytes = ctx->buflen; | ||
| 101 | size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4; | ||
| 102 | |||
| 103 | /* Now count remaining bytes. */ | ||
| 104 | ctx->total[0] += bytes; | ||
| 105 | if (ctx->total[0] < bytes) | ||
| 106 | ++ctx->total[1]; | ||
| 107 | |||
| 108 | /* Put the 64-bit file length in *bits* at the end of the buffer. */ | ||
| 109 | ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29)); | ||
| 110 | ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3); | ||
| 111 | |||
| 112 | memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes); | ||
| 113 | |||
| 114 | /* Process last bytes. */ | ||
| 115 | sha1_process_block (ctx->buffer, size * 4, ctx); | ||
| 116 | |||
| 117 | return sha1_read_ctx (ctx, resbuf); | ||
| 118 | } | ||
| 119 | |||
| 120 | /* Compute SHA1 message digest for bytes read from STREAM. The | ||
| 121 | resulting message digest number will be written into the 16 bytes | ||
| 122 | beginning at RESBLOCK. */ | ||
| 123 | int | ||
| 124 | sha1_stream (FILE *stream, void *resblock) | ||
| 125 | { | ||
| 126 | struct sha1_ctx ctx; | ||
| 127 | size_t sum; | ||
| 128 | |||
| 129 | char *buffer = malloc (BLOCKSIZE + 72); | ||
| 130 | if (!buffer) | ||
| 131 | return 1; | ||
| 132 | |||
| 133 | /* Initialize the computation context. */ | ||
| 134 | sha1_init_ctx (&ctx); | ||
| 135 | |||
| 136 | /* Iterate over full file contents. */ | ||
| 137 | while (1) | ||
| 138 | { | ||
| 139 | /* We read the file in blocks of BLOCKSIZE bytes. One call of the | ||
| 140 | computation function processes the whole buffer so that with the | ||
| 141 | next round of the loop another block can be read. */ | ||
| 142 | size_t n; | ||
| 143 | sum = 0; | ||
| 144 | |||
| 145 | /* Read block. Take care for partial reads. */ | ||
| 146 | while (1) | ||
| 147 | { | ||
| 148 | n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream); | ||
| 149 | |||
| 150 | sum += n; | ||
| 151 | |||
| 152 | if (sum == BLOCKSIZE) | ||
| 153 | break; | ||
| 154 | |||
| 155 | if (n == 0) | ||
| 156 | { | ||
| 157 | /* Check for the error flag IFF N == 0, so that we don't | ||
| 158 | exit the loop after a partial read due to e.g., EAGAIN | ||
| 159 | or EWOULDBLOCK. */ | ||
| 160 | if (ferror (stream)) | ||
| 161 | { | ||
| 162 | free (buffer); | ||
| 163 | return 1; | ||
| 164 | } | ||
| 165 | goto process_partial_block; | ||
| 166 | } | ||
| 167 | |||
| 168 | /* We've read at least one byte, so ignore errors. But always | ||
| 169 | check for EOF, since feof may be true even though N > 0. | ||
| 170 | Otherwise, we could end up calling fread after EOF. */ | ||
| 171 | if (feof (stream)) | ||
| 172 | goto process_partial_block; | ||
| 173 | } | ||
| 174 | |||
| 175 | /* Process buffer with BLOCKSIZE bytes. Note that | ||
| 176 | BLOCKSIZE % 64 == 0 | ||
| 177 | */ | ||
| 178 | sha1_process_block (buffer, BLOCKSIZE, &ctx); | ||
| 179 | } | ||
| 180 | |||
| 181 | process_partial_block:; | ||
| 182 | |||
| 183 | /* Process any remaining bytes. */ | ||
| 184 | if (sum > 0) | ||
| 185 | sha1_process_bytes (buffer, sum, &ctx); | ||
| 186 | |||
| 187 | /* Construct result in desired memory. */ | ||
| 188 | sha1_finish_ctx (&ctx, resblock); | ||
| 189 | free (buffer); | ||
| 190 | return 0; | ||
| 191 | } | ||
| 192 | |||
| 193 | /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The | ||
| 194 | result is always in little endian byte order, so that a byte-wise | ||
| 195 | output yields to the wanted ASCII representation of the message | ||
| 196 | digest. */ | ||
| 197 | void * | ||
| 198 | sha1_buffer (const char *buffer, size_t len, void *resblock) | ||
| 199 | { | ||
| 200 | struct sha1_ctx ctx; | ||
| 201 | |||
| 202 | /* Initialize the computation context. */ | ||
| 203 | sha1_init_ctx (&ctx); | ||
| 204 | |||
| 205 | /* Process whole buffer but last len % 64 bytes. */ | ||
| 206 | sha1_process_bytes (buffer, len, &ctx); | ||
| 207 | |||
| 208 | /* Put result in desired memory area. */ | ||
| 209 | return sha1_finish_ctx (&ctx, resblock); | ||
| 210 | } | ||
| 211 | |||
| 212 | void | ||
| 213 | sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
| 214 | { | ||
| 215 | /* When we already have some bits in our internal buffer concatenate | ||
| 216 | both inputs first. */ | ||
| 217 | if (ctx->buflen != 0) | ||
| 218 | { | ||
| 219 | size_t left_over = ctx->buflen; | ||
| 220 | size_t add = 128 - left_over > len ? len : 128 - left_over; | ||
| 221 | |||
| 222 | memcpy (&((char *) ctx->buffer)[left_over], buffer, add); | ||
| 223 | ctx->buflen += add; | ||
| 224 | |||
| 225 | if (ctx->buflen > 64) | ||
| 226 | { | ||
| 227 | sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx); | ||
| 228 | |||
| 229 | ctx->buflen &= 63; | ||
| 230 | /* The regions in the following copy operation cannot overlap. */ | ||
| 231 | memcpy (ctx->buffer, | ||
| 232 | &((char *) ctx->buffer)[(left_over + add) & ~63], | ||
| 233 | ctx->buflen); | ||
| 234 | } | ||
| 235 | |||
| 236 | buffer = (const char *) buffer + add; | ||
| 237 | len -= add; | ||
| 238 | } | ||
| 239 | |||
| 240 | /* Process available complete blocks. */ | ||
| 241 | if (len >= 64) | ||
| 242 | { | ||
| 243 | #if !_STRING_ARCH_unaligned | ||
| 244 | # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0) | ||
| 245 | if (UNALIGNED_P (buffer)) | ||
| 246 | while (len > 64) | ||
| 247 | { | ||
| 248 | sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx); | ||
| 249 | buffer = (const char *) buffer + 64; | ||
| 250 | len -= 64; | ||
| 251 | } | ||
| 252 | else | ||
| 253 | #endif | ||
| 254 | { | ||
| 255 | sha1_process_block (buffer, len & ~63, ctx); | ||
| 256 | buffer = (const char *) buffer + (len & ~63); | ||
| 257 | len &= 63; | ||
| 258 | } | ||
| 259 | } | ||
| 260 | |||
| 261 | /* Move remaining bytes in internal buffer. */ | ||
| 262 | if (len > 0) | ||
| 263 | { | ||
| 264 | size_t left_over = ctx->buflen; | ||
| 265 | |||
| 266 | memcpy (&((char *) ctx->buffer)[left_over], buffer, len); | ||
| 267 | left_over += len; | ||
| 268 | if (left_over >= 64) | ||
| 269 | { | ||
| 270 | sha1_process_block (ctx->buffer, 64, ctx); | ||
| 271 | left_over -= 64; | ||
| 272 | memcpy (ctx->buffer, &ctx->buffer[16], left_over); | ||
| 273 | } | ||
| 274 | ctx->buflen = left_over; | ||
| 275 | } | ||
| 276 | } | ||
| 277 | |||
| 278 | /* --- Code below is the primary difference between md5.c and sha1.c --- */ | ||
| 279 | |||
| 280 | /* SHA1 round constants */ | ||
| 281 | #define K1 0x5a827999 | ||
| 282 | #define K2 0x6ed9eba1 | ||
| 283 | #define K3 0x8f1bbcdc | ||
| 284 | #define K4 0xca62c1d6 | ||
| 285 | |||
| 286 | /* Round functions. Note that F2 is the same as F4. */ | ||
| 287 | #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) ) | ||
| 288 | #define F2(B,C,D) (B ^ C ^ D) | ||
| 289 | #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) ) | ||
| 290 | #define F4(B,C,D) (B ^ C ^ D) | ||
| 291 | |||
| 292 | /* Process LEN bytes of BUFFER, accumulating context into CTX. | ||
| 293 | It is assumed that LEN % 64 == 0. | ||
| 294 | Most of this code comes from GnuPG's cipher/sha1.c. */ | ||
| 295 | |||
| 296 | void | ||
| 297 | sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx) | ||
| 298 | { | ||
| 299 | const uint32_t *words = buffer; | ||
| 300 | size_t nwords = len / sizeof (uint32_t); | ||
| 301 | const uint32_t *endp = words + nwords; | ||
| 302 | uint32_t x[16]; | ||
| 303 | uint32_t a = ctx->A; | ||
| 304 | uint32_t b = ctx->B; | ||
| 305 | uint32_t c = ctx->C; | ||
| 306 | uint32_t d = ctx->D; | ||
| 307 | uint32_t e = ctx->E; | ||
| 308 | uint32_t lolen = len; | ||
| 309 | |||
| 310 | /* First increment the byte count. RFC 1321 specifies the possible | ||
| 311 | length of the file up to 2^64 bits. Here we only compute the | ||
| 312 | number of bytes. Do a double word increment. */ | ||
| 313 | ctx->total[0] += lolen; | ||
| 314 | ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen); | ||
| 315 | |||
| 316 | #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n)))) | ||
| 317 | |||
| 318 | #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \ | ||
| 319 | ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \ | ||
| 320 | , (x[I&0x0f] = rol(tm, 1)) ) | ||
| 321 | |||
| 322 | #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \ | ||
| 323 | + F( B, C, D ) \ | ||
| 324 | + K \ | ||
| 325 | + M; \ | ||
| 326 | B = rol( B, 30 ); \ | ||
| 327 | } while(0) | ||
| 328 | |||
| 329 | while (words < endp) | ||
| 330 | { | ||
| 331 | uint32_t tm; | ||
| 332 | int t; | ||
| 333 | for (t = 0; t < 16; t++) | ||
| 334 | { | ||
| 335 | x[t] = SWAP (*words); | ||
| 336 | words++; | ||
| 337 | } | ||
| 338 | |||
| 339 | R( a, b, c, d, e, F1, K1, x[ 0] ); | ||
| 340 | R( e, a, b, c, d, F1, K1, x[ 1] ); | ||
| 341 | R( d, e, a, b, c, F1, K1, x[ 2] ); | ||
| 342 | R( c, d, e, a, b, F1, K1, x[ 3] ); | ||
| 343 | R( b, c, d, e, a, F1, K1, x[ 4] ); | ||
| 344 | R( a, b, c, d, e, F1, K1, x[ 5] ); | ||
| 345 | R( e, a, b, c, d, F1, K1, x[ 6] ); | ||
| 346 | R( d, e, a, b, c, F1, K1, x[ 7] ); | ||
| 347 | R( c, d, e, a, b, F1, K1, x[ 8] ); | ||
| 348 | R( b, c, d, e, a, F1, K1, x[ 9] ); | ||
| 349 | R( a, b, c, d, e, F1, K1, x[10] ); | ||
| 350 | R( e, a, b, c, d, F1, K1, x[11] ); | ||
| 351 | R( d, e, a, b, c, F1, K1, x[12] ); | ||
| 352 | R( c, d, e, a, b, F1, K1, x[13] ); | ||
| 353 | R( b, c, d, e, a, F1, K1, x[14] ); | ||
| 354 | R( a, b, c, d, e, F1, K1, x[15] ); | ||
| 355 | R( e, a, b, c, d, F1, K1, M(16) ); | ||
| 356 | R( d, e, a, b, c, F1, K1, M(17) ); | ||
| 357 | R( c, d, e, a, b, F1, K1, M(18) ); | ||
| 358 | R( b, c, d, e, a, F1, K1, M(19) ); | ||
| 359 | R( a, b, c, d, e, F2, K2, M(20) ); | ||
| 360 | R( e, a, b, c, d, F2, K2, M(21) ); | ||
| 361 | R( d, e, a, b, c, F2, K2, M(22) ); | ||
| 362 | R( c, d, e, a, b, F2, K2, M(23) ); | ||
| 363 | R( b, c, d, e, a, F2, K2, M(24) ); | ||
| 364 | R( a, b, c, d, e, F2, K2, M(25) ); | ||
| 365 | R( e, a, b, c, d, F2, K2, M(26) ); | ||
| 366 | R( d, e, a, b, c, F2, K2, M(27) ); | ||
| 367 | R( c, d, e, a, b, F2, K2, M(28) ); | ||
| 368 | R( b, c, d, e, a, F2, K2, M(29) ); | ||
| 369 | R( a, b, c, d, e, F2, K2, M(30) ); | ||
| 370 | R( e, a, b, c, d, F2, K2, M(31) ); | ||
| 371 | R( d, e, a, b, c, F2, K2, M(32) ); | ||
| 372 | R( c, d, e, a, b, F2, K2, M(33) ); | ||
| 373 | R( b, c, d, e, a, F2, K2, M(34) ); | ||
| 374 | R( a, b, c, d, e, F2, K2, M(35) ); | ||
| 375 | R( e, a, b, c, d, F2, K2, M(36) ); | ||
| 376 | R( d, e, a, b, c, F2, K2, M(37) ); | ||
| 377 | R( c, d, e, a, b, F2, K2, M(38) ); | ||
| 378 | R( b, c, d, e, a, F2, K2, M(39) ); | ||
| 379 | R( a, b, c, d, e, F3, K3, M(40) ); | ||
| 380 | R( e, a, b, c, d, F3, K3, M(41) ); | ||
| 381 | R( d, e, a, b, c, F3, K3, M(42) ); | ||
| 382 | R( c, d, e, a, b, F3, K3, M(43) ); | ||
| 383 | R( b, c, d, e, a, F3, K3, M(44) ); | ||
| 384 | R( a, b, c, d, e, F3, K3, M(45) ); | ||
| 385 | R( e, a, b, c, d, F3, K3, M(46) ); | ||
| 386 | R( d, e, a, b, c, F3, K3, M(47) ); | ||
| 387 | R( c, d, e, a, b, F3, K3, M(48) ); | ||
| 388 | R( b, c, d, e, a, F3, K3, M(49) ); | ||
| 389 | R( a, b, c, d, e, F3, K3, M(50) ); | ||
| 390 | R( e, a, b, c, d, F3, K3, M(51) ); | ||
| 391 | R( d, e, a, b, c, F3, K3, M(52) ); | ||
| 392 | R( c, d, e, a, b, F3, K3, M(53) ); | ||
| 393 | R( b, c, d, e, a, F3, K3, M(54) ); | ||
| 394 | R( a, b, c, d, e, F3, K3, M(55) ); | ||
| 395 | R( e, a, b, c, d, F3, K3, M(56) ); | ||
| 396 | R( d, e, a, b, c, F3, K3, M(57) ); | ||
| 397 | R( c, d, e, a, b, F3, K3, M(58) ); | ||
| 398 | R( b, c, d, e, a, F3, K3, M(59) ); | ||
| 399 | R( a, b, c, d, e, F4, K4, M(60) ); | ||
| 400 | R( e, a, b, c, d, F4, K4, M(61) ); | ||
| 401 | R( d, e, a, b, c, F4, K4, M(62) ); | ||
| 402 | R( c, d, e, a, b, F4, K4, M(63) ); | ||
| 403 | R( b, c, d, e, a, F4, K4, M(64) ); | ||
| 404 | R( a, b, c, d, e, F4, K4, M(65) ); | ||
| 405 | R( e, a, b, c, d, F4, K4, M(66) ); | ||
| 406 | R( d, e, a, b, c, F4, K4, M(67) ); | ||
| 407 | R( c, d, e, a, b, F4, K4, M(68) ); | ||
| 408 | R( b, c, d, e, a, F4, K4, M(69) ); | ||
| 409 | R( a, b, c, d, e, F4, K4, M(70) ); | ||
| 410 | R( e, a, b, c, d, F4, K4, M(71) ); | ||
| 411 | R( d, e, a, b, c, F4, K4, M(72) ); | ||
| 412 | R( c, d, e, a, b, F4, K4, M(73) ); | ||
| 413 | R( b, c, d, e, a, F4, K4, M(74) ); | ||
| 414 | R( a, b, c, d, e, F4, K4, M(75) ); | ||
| 415 | R( e, a, b, c, d, F4, K4, M(76) ); | ||
| 416 | R( d, e, a, b, c, F4, K4, M(77) ); | ||
| 417 | R( c, d, e, a, b, F4, K4, M(78) ); | ||
| 418 | R( b, c, d, e, a, F4, K4, M(79) ); | ||
| 419 | |||
| 420 | a = ctx->A += a; | ||
| 421 | b = ctx->B += b; | ||
| 422 | c = ctx->C += c; | ||
| 423 | d = ctx->D += d; | ||
| 424 | e = ctx->E += e; | ||
| 425 | } | ||
| 426 | } | ||
